已知函数f(x)=sinx/2+2cos^2x/4,求函数f(x)最小正周期
在三角形ABC中,若(2a-c)cosB=bcosC,求f(A
)的取值范围
已知函数f(x)=sinx/2+2cos^2x/4,求函数f(x)最小正周期
答案:1 悬赏:0 手机版
解决时间 2021-04-04 11:25
- 提问者网友:鼻尖触碰
- 2021-04-04 01:17
最佳答案
- 五星知识达人网友:从此江山别
- 2021-04-04 01:40
f(x)=sinx/2+2cos^2x/4=√2sinx/2+cosx/2 +1=cos(x/2+π/4)+1,因此最小正周期为T=2π/(1/2)=4π
2、由正弦定理得2sinAcosB-sinCcosB=sinBcosC;2sinAcosB=sin(B+C);sinA(2cosB-1)=0,因此B=60度,所以A∈(0度,120度),A/2+π/4∈(45度,105度);cos(A/2+π/4)∈((√2-√6)/4,1)
f(A)=√2cos(A/2+π/4)+1的取值范围为((3-√3)/2,3)
再问: 还有一个问题 呢
再答: 由正弦定理得2sinAcosB-sinCcosB=sinBcosC;2sinAcosB=sin(B+C);sinA(2cosB-1)=0,因此B=60度,所以A∈(0度,,120度),A/2+π/4∈(45度,105度);cos(A/2+π/4)∈((√2-√6)/4,1) f(A)=√2cos(A/2+π/4)+1的取值范围为((3-√3)/2,3)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯