证明(2xcosy+y^2*cosx)dx+(2ysinx-x^2*siny)dy 某个函数u(x,y)的全微分,并求出
答案:1 悬赏:0 手机版
解决时间 2021-07-25 20:24
- 提问者网友:人傍凄凉立暮秋
- 2021-07-24 23:32
证明(2xcosy+y^2*cosx)dx+(2ysinx-x^2*siny)dy 某个函数u(x,y)的全微分,并求出u(x,y)
最佳答案
- 五星知识达人网友:低血压的长颈鹿
- 2021-07-25 01:08
假设(2xcosy+y^2*cosx)dx+(2ysinx-x^2*siny)dy 某个函数u(x,y)的全微分
du/dx=2xcosy+y^2*cosx.(1)
du/dy=2ysinx-x^2*siny.(2)
对(1)的x积分
u=x^2*cos(y) + y^2*sin(x)..(3)
对(2)的y积分
u=x^2*cos(y) + y^2*sin(x)...(4)
3式与4式相等
u(x,y)=x^2*cos(y) + y^2*sin(x)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯