如图,EF为梯形ABCD的中位线,AH平分∠DAB交EF于M,延长DM交AB于N.
求证:△ADN是等腰三角形.
如图,EF为梯形ABCD的中位线,AH平分∠DAB交EF于M,延长DM交AB于N.求证:△ADN是等腰三角形.
答案:2 悬赏:40 手机版
解决时间 2021-01-05 01:35
- 提问者网友:太高姿态
- 2021-01-04 02:19
最佳答案
- 五星知识达人网友:轻雾山林
- 2021-01-04 02:42
证明:∵EF为梯形ABCD的中位线,
∴EF∥AB,
∴∠EMA=∠NAM,
∵AH平分∠DAB,
∴∠EAM=∠NAM,
∴∠EAM=∠EMA=∠NAM,
∴EA=EM,可得AD=2AE,
又EM∥AB,E为AD的中点,
∴M为DN的中点,
∴EM为△DAN的中位线,
∴AN=2EM=2AE,
则可得AD=AN.
∴△ADN是等腰三角形.解析分析:因为EF是梯形中位线,所以也是△AND的中位线,又AH是角平分线,可以得到边AD、AN都是EM的2倍,就可以得到三角形是等腰三角形.点评:利用好中位线和角平分线的性质,证得两条边相等本题就得以解决.
∴EF∥AB,
∴∠EMA=∠NAM,
∵AH平分∠DAB,
∴∠EAM=∠NAM,
∴∠EAM=∠EMA=∠NAM,
∴EA=EM,可得AD=2AE,
又EM∥AB,E为AD的中点,
∴M为DN的中点,
∴EM为△DAN的中位线,
∴AN=2EM=2AE,
则可得AD=AN.
∴△ADN是等腰三角形.解析分析:因为EF是梯形中位线,所以也是△AND的中位线,又AH是角平分线,可以得到边AD、AN都是EM的2倍,就可以得到三角形是等腰三角形.点评:利用好中位线和角平分线的性质,证得两条边相等本题就得以解决.
全部回答
- 1楼网友:玩世
- 2021-01-04 04:10
谢谢了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯