(1)计算(x+1)(x+2)=______,(x-1)(x-2)=______,(x-1)(x+2)=______,(x+1)(x-2)=______.
(2)你发现(1)小题有何特征,会用公式表示出来吗?
(3)已知a、b、m均为整数,且(x+a)(x+b)=x2+mx+12,则m的可能取值有多少个?
(1)计算(x+1)(x+2)=______,(x-1)(x-2)=______,(x-1)(x+2)=______,(x+1)(x-2)=______.(2)你发现
答案:2 悬赏:30 手机版
解决时间 2021-01-03 14:15
- 提问者网友:太高姿态
- 2021-01-03 05:40
最佳答案
- 五星知识达人网友:酒醒三更
- 2021-01-03 06:01
解:(1)(x+1)(x+2)=x2+3x+2,
(x-1)(x-2)=x2-3x+2,
(x-1)(x+2)=x2+x-2,
(x+1)(x-2)=x2-x-2;
(2)可以发现题(1)中,左右两边式子符合(x+p)(x+q)=x2+(p+q)x+pq结构.
(3)因为12可以分解以下6组数,a×b=1×12,2×6,3×4,(-1)×(-12),(-2)×(-6),(-3)×(-4),所以m=a+b应有6个值.解析分析:(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.
(2)根据(1)计算的结果,式子的一般形式是(x+p)(x+q)=x2+(p+q)x+pq.
(3)12=1×12=2×6=3×4=(-1)×(-12)=(-2)×(-6)=(-3)×(-4),故m的取值6个.点评:本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键.
(x-1)(x-2)=x2-3x+2,
(x-1)(x+2)=x2+x-2,
(x+1)(x-2)=x2-x-2;
(2)可以发现题(1)中,左右两边式子符合(x+p)(x+q)=x2+(p+q)x+pq结构.
(3)因为12可以分解以下6组数,a×b=1×12,2×6,3×4,(-1)×(-12),(-2)×(-6),(-3)×(-4),所以m=a+b应有6个值.解析分析:(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.
(2)根据(1)计算的结果,式子的一般形式是(x+p)(x+q)=x2+(p+q)x+pq.
(3)12=1×12=2×6=3×4=(-1)×(-12)=(-2)×(-6)=(-3)×(-4),故m的取值6个.点评:本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键.
全部回答
- 1楼网友:不如潦草
- 2021-01-03 07:07
我好好复习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯