永发信息网

已知数列(an)的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数

答案:1  悬赏:20  手机版
解决时间 2021-11-30 19:54
  • 提问者网友:太高姿态
  • 2021-11-30 06:04
已知数列(an)的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数
最佳答案
  • 五星知识达人网友:十年萤火照君眠
  • 2021-11-30 06:27
1.数列{an}的前n项和Sn=-an-(1/2)^(n-1)+2
当n=1时,S1=a1=-a1+1 a1=1/2
当n>=2时,Sn-1=-an-(1/2)^(n-2)+2
Sn-Sn-1=an=-an+an-1-(1/2)^(n-1)+(1/2)^(n-2)
2an=an-1+(1/2)^(n-1)
2a+1=an+(1/2)^n
两式联立得到4an+1+an-1=4an
又bn=2^n*an
bn+1=2^n+1*an+1=2^n*2an+1
bn-1=2^n-1*an-1=2^n*(1/2an-1)
bn+1+bn-1=2^n(2an+1+1/2an-1)
=2^n*(2an)=2bn
所以数列bn是等差数列
公差d=b2-b1=2^2*a2-a1=1
bn=n an=n/2^n
2.cn=(n+1)/n*an=(n+1)/2^n=n/2^n+(1/2)^n
设a=1/2+2/4+3/8+...+n/2^n
b=1/2+1/4+1/8+...+1/2^n

因为a = 1/2+2/4+3/8+...+(n-1)/2^(n-1)+n/2^n
所以2a=1+2/2+3/4+4/8+...+n/2^(n-1)
所以2a-a=a=[1+1/2+1/4+1/8+....+1/2^(n-1)]-n/2^n
=2-2/2^n-n/2^n
而b=1-1/2^n
所以Tn=a+b=3-(n+3)/2^n
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯