永发信息网

一氧化氮的作用有哪些?

答案:4  悬赏:80  手机版
解决时间 2021-03-09 21:22
  • 提问者网友:轮囘Li巡影
  • 2021-03-08 23:28
讲全面点!
最佳答案
  • 五星知识达人网友:逐風
  • 2021-03-09 00:28
一氧化氮起着信使分子的作用。当内皮要向肌肉发出放松指令以促进血液流通时,它就会产生一些一氧化氮分子,这些分子很小,能很容易地穿过细胞膜。血管周围的平滑肌细胞接收信号后舒张,使血管扩张。 一氧化氮也能在神经系统的细胞中发挥作用。它对周围神经末梢所起的作用。大脑通过周围神经发出信息,向会阴部的血管提供相应的一氧化氮,引起血管的扩张,增加血流量,从而增强勃起功能。在一些情况下,勃起无力是由于神经末梢产生的一氧化氮较少所致。“伟哥”能扩大一氧化氮的效能,从而增强勃起功能。 一氧化氮是无色气体,工业制备他是在铂网催化剂上用空气将氨氧化的方法;实验室中则用金属铜与稀硝酸反应。 NO在水中的溶解度较小,而且不与水发生反应。常温下NO很容易氧化为二氧化氮,也能与卤素反应生成卤化亚硝酰(NOX)如2NO+Cl2=2NOCl 免疫系统产生的一氧化氮分子,不仅能抗击侵入人体的微生物,而且还能够在一定程度上阻止癌细胞的繁殖,阻止肿瘤细胞扩散。
全部回答
  • 1楼网友:神的生死簿
  • 2021-03-09 03:35
有医药作用。用于治疗冠心病。
  • 2楼网友:痴妹与他
  • 2021-03-09 02:31
l、整体和局部组织发生缺血、缺氧时一氧化氮的变化有关这类研究的报道较多,但结论互相矛盾。戴爱国等(1996)利用猪肺脏进行的缺氧实验证明:缺氧对猪肺动脉内皮细胞 NOS的活性和基因表达有明显的抑制作用,其内皮细胞的NO合成减少。冉培鑫等(1997)证明大鼠缺氧时肺组织内NOSmRNA的表达降低。高春锦等(1998)给大鼠造成ACOP(全身缺氧)时动物动脉血内NO减少。薛连壁等(l999)的大鼠ACOP实验也得到同样结果。但也有相反结果的报道Horryl和Stephon R最近报道大鼠ACOP时血浆 NO增高。有学者报道缺氧时早期机体内源性NO释放增高。我们认为Horryl等与高春锦的大鼠ACOP实验的结果并不矛盾Horryl等的实验很可能是大鼠ACOP后立刻抽血测定NO,此时大鼠中毒极早,VEC受缺血、缺氧的刺激,但还没有发生功能和结构的明显损害,故VEC在缺氧刺激下NOS活性代偿性增强,NO产生增多。高春锦的实验是在大鼠ACOP后约2-3h后才抽血检测NO,此时大鼠的VEC的功能和结构已经遭到明显的损害,以致NOS活性降低,同时大量VEC损伤脱落,故而NO减少。薛连壁等的大鼠ACOP实验证明大鼠中毒即刻(中毒后2-3h)测定之动脉血内NO(从8.62±0.99mmol/L降至5.32±1.09mmol/L)、CEC(从3.74±0.12增至4.21±0.13)的变化。说明此时大鼠VEC发生大量脱落,NO合成明显减弱。 脑缺血-再罐流损伤的机制非常复杂,有多种因素参与,钙超载、兴奋性氨基酸毒性作用、氧自由基毒性作用等日益为人们所接受。近年来,随着对一氧化氮(NO)研究的深入,NO在脑缺血-再灌流损伤中的作用也成为当代医学研究的一大热点。本文对NO在脑缺血-再灌流中的生物合成、变化规律及毒性作用机制研究进展作一综述。 1 NO的生物合成及特点 1980年Furchgott和Zawadzki首次提出由内皮细胞产生的内皮源性舒张因子(EDRF)对包括脑血液循环在内的多种血管都有明显的舒张作用。现已证明E-DRF就是NO。NO是一种无负荷、自由基性质的气体,带有不成对的电子,容易弥散通过细胞膜。NO的生物合成是通过一条鸟氨酸循环的分支来完成的,即L-精氨酸(非D-精氨酸)通过一氧化氮合酶(NOS)的作用生成瓜氨酸并释放出NO,该反应过程需要分子氧、黄素腺嘌呤二核苷酸(FAD)、黄素单核苷酸(FMN)、生物喋呤、钙调蛋白(CaM)和还原型辅酶Ⅱ(NADPH)的参与。 NO兼有信使物质和神经递质的功能,在各系统中均有广泛的生物学特性,它既能舒张血管,抗血小板和白细胞粘附、聚集,又具有细胞毒性作用,还能充当一种新型信息分子,发挥递质功能[1]。在脑缺血-再灌流过程中,不同类型的NOS产生的NO对缺血脑组织产生复杂的影响, 目前较公认的为内皮型NOS产生的NO有神经保护作用,而神经元型和诱导型NOS产生的NO则有神经毒性作用。Lipton等提出NO在生理及病理条件下的作用可能与其本身的氧化还原状态有关。氧化型离子(NO+)能引起N-甲基-D天冬氨酸(NMDA)受体疏基亚硝基化,通过阻断NMDA受体发挥神经保护作用,而NO还原型离子(NO-)则能与超氧阴离子(02-)反应生成过氧化亚硝酸阴离子而起细胞毒作用。 2 NOS的分布及其特点 催化NO生物合成的酶称为NOS,NOS广泛存在于各种类型的细胞中,它的活体形式是个二聚体,需要FAD、FMN、血红素及四氢叶酸等作为辅助因子。1998年Garthwait首次证实脑组织中存在NOS。各个组织细胞中酶的活性、特性和产生的基因都可不同,但其氨基酸顺序约有50%是相同的。现己确定的NOS亚型有3种,根据原型酶的细胞或组织来源不同分别称为脑神经元型NOS(nNOS)、内皮细胞型NOS(eNOS)和白细胞/巨噬细胞型NOS(iNOS)。他们的编码基因分别定位于12、17和7号染色体上[2]。这3种亚型的NOS总的来讲从功能上可分为两大类即原生型NOS(cNOS,包括nNOS和eNOS)和诱导型NOS(iNOS)。 原生型NOS(eNOS)分布于血管内皮细胞、神经组织和血小板中,该酶为可溶性酶,它的合成受Ca2+和CaM的调节,任何引起Ca2+进入细胞的因素均能导致eNOS活性增加。当胞浆内Ca2+浓度达到0.4~1μmol/L时该酶活性最大。它被激活时,NO释放的时间短,其中eNOS产生的NO更接近血管平滑肌,它可以激活血管平滑肌细胞中的可溶性鸟苷酸环化酶,使胞内cAMP浓度升高,从而起到扩张血管、抑制血小板和白细胞粘附、聚集的作用,发挥生理功能。而nNOS则是神经元和小胶质细胞在缺血急性期,NMDA受体激活Ca2+大量内流时产生的,具有神经毒性作用。 诱导型NOS(iNOS)主要分布于巨噬细胞、炎性中性粒细胞、血管平滑肌细胞、内皮细胞、小胶质细胞和星型细胞等。它是非钙依赖性酶,在基态下不合成NO,只有在缺血、缺氧和某些细胞因子如肿瘤坏死因子(TNF)等的激活下经4~8h方可诱导iNOS mRNA的表达,产生释放大量的NO[3]。与cNOS不同的是,iNOS是由DNA转录调节的,一旦此酶合成就不断地产生NO,直至底物耗尽[4]。iNOS的mRNA3’端缺乏AUUUA富含区,mRNA的降解速率与AUUUA富含区关系密切,所以iNOS的mRNA半衰期特别长,一旦诱导合成即可持续长时间翻译,合成iNOS[5],这种过量产生的NO可对缺血组织造成损害,而对于产生NO的细胞则无明显影响,这可能是由于这些细胞中维持NOS活性的Ca2+对其鸟苷酸环化酶具有抑制作用或者这些细胞中含有大量的超氧化物歧化酶(SOD)可以对抗NO的损伤的结果。 3 脑缺血-再灌流时NO的变化规律 脑缺血发生后,NO迅速短暂升高,5~35min达高峰,60min内下降至原有水平。此时的NO升高主要由神经元的nNOS和血管内皮细胞的eNOS所介导,若缺血继续,NO逐渐下降,当再灌流时NO又逐步升高,至再灌流24h达高峰[6],再灌流7d的NO水平仍高于缺血前水平,这可能是再灌流后早期NOS所需氧和底物供应得到改善以及NO的产生释放增加所致,而再灌流后期(12h后)iNOS被诱导表达也可产生大量的NO。如长时间缺血超过6h,iNOS在脑缺血后的炎症细胞部位表达,使NO再次升高。缺血的方式不同,iNOS的表达时间也不相同。Iadecola实验室采用逆转录-聚合酶链式反应(RT-PCR)技术发现iNOS mRNA在持久性大脑中动脉阻断(MCAO)后12h开始表达,2d达高峰:而短暂性MCAO后则不同,它的iNOS mRNA在MCAO后12h即达高峰,4d左右降至正常。 nNOS和iNOS产生的NO均可引起神经组织损伤,但由于nNOS半衰期短,产生的NO量少,对神经系统的毒性作用相对较小,临床意义不大。且在缺血超早期,内皮细胞产生的NO量超过神经元产生的有毒性NO,通过增加侧支循环,阻止血小板聚集和白细胞对微血管的堵塞,改善微循环,抵消了毒性作用。随着缺血时间的延长,在缺血后期及再灌流期,损伤区内发生明显的炎症反应和白细胞侵入,并伴有iNOS mRNA的高度表达。由于iNOS与CaM结合紧密,即使在低Ca2+的条件下也能保持其活性,产生大量的NO,这一期产生的NO具有更大的神经毒性,引起迟发性脑损伤,具有更重要的意义。实验证明iNOS基因敲除的大鼠在MCA02d后其梗塞体积明显小于对照组[7],而以此期间使用iNOS抑制剂氨基胍可以明显减少缺血压神经元的损伤[8]。 4 NO在脑缺血-再灌流损伤中的神经毒性作用机制 脑的活动主要依靠葡萄糖的有氧氧化提供能量,它是一个对缺氧最敏感的器官,一旦脑缺血达到一定程度,再灌流不仅不能使缺血区代谢和机能得以恢复反而加重脑水肿及扩大脑梗死面积,再灌流的结果实际是缺血的延续。已有多方面的证据表明在脑缺血期及再灌流期中,由nNOS和iNOS产生的大量NO对神经细胞具有毒性作用,其作用的机制可能为: 4.1 NO通过超氧自由基起细胞毒性作用 在生理情况下,NO与02-反应速度比SOD清除O2-的速度快3倍,但由于体内NO浓度(10~1OOnmol/L)比体内SOD的浓度大约低100倍,此时产生的NO很难与SOD竞争O2-,而主要作为信使传导分子行使其功能。在脑缺血-再灌流时,由nNOS和iNOS产生的脑内NO浓度显著升高以至于达到能与SOD竞争超氧化物的水平。NO迅速与O2-反应生成硝基过氧化物(0N00-),后者质子化后进一步生成过氧亚硝酸(ONOOH),并在酸性环境中分解为OH-和N02。过去认为,OH-是NO引起脑损伤的最重要的氧自由基,现在则认为ONOO-的直接氧化作用的毒性远远大于OH-,它不仅是一种很强的氧化剂,更重要的是它对反应有很高的选择性,如过氧化亚硝基能够直接氧化脂质、DNA及蛋白的疏基、锌/硫中心、铁/硫中心等,上述反应的速度大约是过氧化亚硝酸分解产生OH-速率的1000倍。这些产物均可造成严重的细胞损伤。 4.2 NO介导谷氨酸(Glu)的毒性作用 脑缺血-再灌流时Glu过度释放,通过激活Glu受体的NMDA受体亚型,促使Ca2+大量内流,诱导nNOS表达引起NO合成大量增加。iNOS的诱导表达也受Ca2+的影响,此即为NMDA-Ca2+-NO通路。 4.3 NO作用于含铁蛋白产生毒性作用 NO极易与铁(Fe)结合形成Fe-NO,使含Fe(酶失活。如NO作用于含血红素基团的酶,激活ADP-核糖转移酶,使ADP核糖化,引起蛋白质结构和功能的改变:NO作用于含Fe-S蛋白类的复合物,如线粒体中的泛醌氧化还原酶、琥珀酸氧化还原酶、顺乌头酸氧化还原酶等,使它们失活,从而抑制线粒体呼吸并导致迅速的能量耗竭。 4.4 NO导致DNA的损伤作用[9] NO通过脱氨基作用导致DNA损伤,并抑制核糖核苷酸还原酶,此酶为DNA合成的限速酶。NO和其产物N000-、OH-还可以引起DNA氧化,破坏DNA的结构,进一步损伤DNA。 4.5 NO引起多巴胺(DA)大量释放产生神经毒性 脑缺血时,纹状体释放的大量谷氨酸作用于多巴胺能神经元末梢上的NMDA受体,然后激活NOS,生成的NO激活鸟苷酸环化酶升高cGMP水平,最终导致大量的DA释放,后者可能参与神经细胞的损伤。Spatz[10]等证明抑制NOS可以明显降低DA的释放,减少脑损伤。4.6近年来研究显示,由iNOS诱导产生的大量NO还可以加强缺血后脑组织中环氧化物酶Ⅱ(COX-2)的活性,使缺血期积累的大量花生四烯酸在COX-2作用下生成前列腺素、白三烯和大量的反应活性氧(02-),从而增加其毒性。对大鼠局灶性脑缺血的研究发现,缺血后24h缺血区周围iNOS阳性的中性粒细胞与COX-2阳性的神经元相混杂,平均距离近16±1μm,这正在NO扩散能力之内,使用iNOS基因敲除的大鼠,MCAO48h后,缺血侧半球前列腺素、白三烯的水平较对照组减少40%~50%[11]。 5 NO与缺血半暗带(IP) 1981年Abtrup等将围绕局灶脑缺血中心区的类似于“全日食”的这部分周围区域(IP)定义为:围绕着梗塞中心的缺血性脑组织,其电活动己终止尚保持正常的离子平衡和结构完整;如再适当增加局部脑血流,至少在急性阶段突触传递能完全恢复,亦即IP内缺血脑组织的功能是可能恢复的。从此IP成为局灶性脑缺血中心坏死区以外脑组织可逆性损害区的代名词,也是治疗缺血性脑血管病时竭力抢救的区域。局灶性脑缺血是由严重缺血的中心区和处于低灌流状态的IP组成。随着缺血时间的推移,缺血中心区和IP处于动态变化过程。在有利条件下,IP可转化为正常灌流区(时限性可逆),在不利情况下转化为梗塞区(不可逆转),并在缺血中心区向临近组织扩散,并最终成为永久性梗塞灶的一部分[12]。IP持续的时间与很多因素有关,迄今绝大多数学者认为,在脑缺血后6~8h梗塞中心区损害即非常明显,而半暗带的细胞能存活数小时(急性IP)至数日(慢性IP),在MCAO后3d,仍有可逆性神经损害[13~14]。 IP损伤的机制有多种,即微血管损伤、组织水肿、多形核白细胞(PMN)聚集浸润和星形胶质细胞反应增生是促使半暗带损害的机制之一。大鼠MCAO模型中,梗塞中心区在外侧纹状体及其外侧皮质,而岛叶、尾状核内侧部及顶叶皮层被证明为半暗区,此区域于短暂MCAO后24h内即有明显的血脑屏障破坏[15]、组织水肿、白细胞浸润和胶质细胞反应性增生,被缺血/缺氧激活的白细胞、星形胶质细胞和小胶质细胞可以产生多种细胞因子如IL-1、IL-6、IL-8、TNF-2、IFN-γ等,诱导iNOSmRNA表达产生过量的NO,影响梗塞周边半暗带神经元的存活。 在脑缺血后期及再灌流期,血管源性中性粒细胞透过血脑屏障,与脑内的巨噬细胞、小胶质细胞一起激活iNOS,合成大量NO,参与半暗带的神经损伤[16]。Stephen Ashwal等[17]利用大鼠实验发现iNOS活性在脑缺血中心区>半暗区>非缺血区,形成了NO由缺血中心区向正常区递减的梯度。促使半暗区神经元发生进行性损伤,使半暗区不断地加入梗死区,扩大梗塞面积。同时由于再灌流期氧的供应,黄嘌呤脱氢酶转化为黄嘌呤氧化酶产生大量的02-,NO与O2-反应生成ONOO-加重半暗区的损伤。由于iNOS于缺血后12h方开始升高,2d达高峰,此时缺血中心区坏死已十分明显,而半暗区尚有大量存活的可逆性损伤的神经元,这种过量的NO必将主要影响半暗区受损神经元的存活,大鼠实验表明iN05抑制剂可以阻断NO的强烈损伤作用,减轻血脑屏障的破坏、脑组织和血管内皮的损伤,使缺血半暗带得到保护,从而减少梗塞面积。 6结语 NO在脑缺血-再灌流中的作用十分复杂,不同的时间、不同NOS产生的NO对脑组织作用不同,eNOS产生的NO主要起神经保护作用,而nNOS、iNOS产生的、NO则有神经毒性作用,特别是iNOS,因其作用时间长,产生NO量大,可以诱发一系列病理反应,主要损伤半暗区,更具有实际意义。目前对NO与脑缺血的研究还在进行中,这一领域的进展将为探讨脑缺血损伤机制;寻找高效、高选择性nNOS和iNOS抑制剂,使得NO在脑缺血-再灌流损伤中既保持其舒张脑血管,增加缺血区血流量和抗血小板及白细胞粘聚的保护作用,又避免其对脑组织的损伤作用;以及为脑血管病的治疗提供新思路。
  • 3楼网友:第四晚心情
  • 2021-03-09 01:39
一氧化氮的作用 一氧化氮起着信使分子的作用。当内皮要向肌肉发出放松指令以促进血液流通时,它就会产生一些一氧化氮分子,这些分子很小,能很容易地穿过细胞膜。血管周围的平滑肌细胞接收信号后舒张,使血管扩张。 一氧化氮也能在神经系统的细胞中发挥作用。它对周围神经末梢所起的作用。大脑通过周围神经发出信息,向会阴部的血管提供相应的一氧化氮,引起血管的扩张,增加血流量,从而增强勃起功能。在一些情况下,勃起无力是由于神经末梢产生的一氧化氮较少所致。“伟哥”能扩大一氧化氮的效能,从而增强勃起功能。 免疫系统产生的一氧化氮分子,不仅能抗击侵入人体的微生物,而且还能够在一定程度上阻止癌细胞的繁殖,阻止肿瘤细胞扩散。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯