在高数解微分方程的时候,全微分方程的求解公式是怎么来的?望达人告知一下推导过程!感激不尽!
答案:2 悬赏:0 手机版
解决时间 2021-11-21 21:22
- 提问者网友:饥饿走向夜
- 2021-11-21 11:23
在高数解微分方程的时候,全微分方程的求解公式是怎么来的?望达人告知一下推导过程!感激不尽!
最佳答案
- 五星知识达人网友:白昼之月
- 2021-11-21 11:34
您是不是指得这个公式:
方程udx+vdy=0如果满足du/dy=dv/dx则为全微分方程(简便起见偏导我也用导数表示了),其通解为∫udx+∫vdy=0。
这个没什么好推导的,直接带进去就行了。对原方程两端同时乘以du/dy,注意到du/dy=dv/dx,原式可化为udv+vdu=0,注意到d(uv)=udv+vdu,所以原式可化为d(uv)=0,直接积分就可得uv=C为原方程的通解,其中C为待定常数,等价于∫udx+∫vdy=0。全微分方程之所以被叫做全微分方程,就是因为方程可以化为d(f(x,y))=0的形式,也就是说可以化为二元函数f(x,y)的全微分等于0的形式,方程通解就是f(x,y)=C。
一般情况下解全微分方程没有用公式的,只要你把方程化为d(f(x,y))=0的形式,那么通解就是f(x,y)=C。
方程udx+vdy=0如果满足du/dy=dv/dx则为全微分方程(简便起见偏导我也用导数表示了),其通解为∫udx+∫vdy=0。
这个没什么好推导的,直接带进去就行了。对原方程两端同时乘以du/dy,注意到du/dy=dv/dx,原式可化为udv+vdu=0,注意到d(uv)=udv+vdu,所以原式可化为d(uv)=0,直接积分就可得uv=C为原方程的通解,其中C为待定常数,等价于∫udx+∫vdy=0。全微分方程之所以被叫做全微分方程,就是因为方程可以化为d(f(x,y))=0的形式,也就是说可以化为二元函数f(x,y)的全微分等于0的形式,方程通解就是f(x,y)=C。
一般情况下解全微分方程没有用公式的,只要你把方程化为d(f(x,y))=0的形式,那么通解就是f(x,y)=C。
全部回答
- 1楼网友:北方的南先生
- 2021-11-21 12:05
微分方程的解的公式不只一个,你要找哪类方程的解的公式呢?追问晕,是全微分方程,据我所知好像只有一种微分方程是全微分方程。。。。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯