一道数学题!帮帮忙了
答案:4 悬赏:30 手机版
解决时间 2021-08-21 00:11
- 提问者网友:且恨且铭记
- 2021-08-20 18:29
在△ABC中,a²+b²-c²+ab=0,求∠C
最佳答案
- 五星知识达人网友:人间朝暮
- 2021-08-20 18:51
由余弦定理知 cos∠C =(a²+b²-c²)/2ab 已知a²+b²-c²+ab=0 所以cos∠C=-1/2 ∠C=120°
全部回答
- 1楼网友:执傲
- 2021-08-20 20:34
解: 由 a²+b²-c²+ab=0 得 a²+b²-c²=-ab
COS ∠C = ( a²+b²-c² ) / 2ab
= ( -ab ) / 2ab = -1/2
∵ C ∈ ( 0 ,180)
∴ ∠C =120度
- 2楼网友:鱼忧
- 2021-08-20 19:43
c²=a²+b²+ab
有余弦定理
c²=a²+b²-2abcos∠C
所以-2abcos∠C=ab
cos∠C =-0.5
∠C=120度
- 3楼网友:舊物识亽
- 2021-08-20 19:01
-60度
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯