永发信息网

解微分方程y’’+9y=cosx+2x+1

答案:1  悬赏:60  手机版
解决时间 2021-05-21 16:48
  • 提问者网友:酱爆肉
  • 2021-05-21 13:07
解微分方程y''+9y=cosx+2x+1
最佳答案
  • 五星知识达人网友:走死在岁月里
  • 2021-05-21 13:53

y''+9y=0的特征方程为;λ²+9=0.所以;λ=±3i,得通解为:y=C1sin(3x)+C2cos(3x),(C1,C2为任意常数)
设y''+9y=cosx的特解为:y=asinx+bcosx,则y'=acosx-bsinx,所以y=-asinx-bcosx代入方程,有
(-asinx-bcosx)+9(asinx+bcosx)=cosx,即8asinx+8bcosx=cosx,所以a=0,b=1/8.
所以y''+9y=cosx的特解为:y=(1/8)cosx
设y''+9y=2x+1的特解为:y=cx+d,则y'=c.y=0,代入方程,有
9(cx+d)=2x+1,所以c=2/9,d=1/9
所以y''+9y=2x+1的特解为:y=(2/9)x+(1/9)
故y''+9y=cosx+2x+1的解为:y=C1sin(3x)+C2cos(3x)+(1/8)cosx+(2/9)x+(1/9),(C1,C2为任意常数).
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯