如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,有下列说法:
①点A与点B的距离是线段AB的长;
②点A到直线CD的距离是线段AD的长;
③线段CD是△ABC边AB上的高;
④线段CD是△BCD边BD上的高.
上述说法中,正确的个数为A.1个B.2个C.3个D.4个
如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,有下列说法:①点A与点B的距离是线段AB的长;②点A到直线CD的距离是线段AD的长;③线段CD是△ABC
答案:2 悬赏:50 手机版
解决时间 2021-02-15 18:39
- 提问者网友:饥饿走向夜
- 2021-02-15 10:36
最佳答案
- 五星知识达人网友:慢性怪人
- 2019-07-08 04:41
D解析分析:根据三角形的高的定义即可判断②③④,根据两点间的距离定义即可判断①.解答:①、根据两点间的距离的定义得出:点A与点B的距离是线段AB的长,∴①正确;②、点A到直线CD的距离是线段AD的长,∴②正确;③、根据三角形的高的定义,△ABC边AB上的高是线段CD,∴③正确;④、根据三角形的高的定义,△DBC边BD上的高是线段CD,∴④正确.综上所述,正确的是①②③④共4个.故选D.点评:本题主要考查对三角形的角平分线、中线、高,两点间的距离等知识点的理解和掌握,能熟练地运用性质进行判断是解此题的关键.
全部回答
- 1楼网友:未来江山和你
- 2020-03-16 02:52
我也是这个答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯