高数积分求解!急!
答案:2 悬赏:70 手机版
解决时间 2021-03-28 10:23
- 提问者网友:沉默的哀伤
- 2021-03-28 03:18
高数积分求解!急!
最佳答案
- 五星知识达人网友:妄饮晩冬酒
- 2021-03-28 03:41
如图
全部回答
- 1楼网友:几近狂妄
- 2021-03-28 04:01
证明:
1:证:欲证4是f(x)的一个周期,等价于对所有的x∈R有f(x)=f(x+4)
∵f(x)=-f(x+2)
∴f(x+2)=-f(x+4)
∴f(x)=f(x=4)
得证。
变式:同理,∵对所有的x∈R,f(x+2)=-1/f(x),
∴对所有的x∈R,f(x)≠0
∴f(x+4)=-1/f(x+2)=f(x)
得证。
2:证:∵f(x)是偶函数,所以有f(x)=f(-x)
又f(x)以2为周期,所以有f(x)=f(x-2)
∴f(3.5)=f(3.5-2)=f(1.5)=f(1.5-2)
=f(-0.5)=f(0.5)=0.52=0.25
4.
原式=lim(x->+**)1/x/1/x=1
5.
原式=lim(x->1)(1-x)/cosπx/2=lim(x->1)-1/-π/2*sinπx/2=2/π
6.
原式=lim(x->0+)(1/x-1/x)=0
7.
原式=lim(x->0+)e^tanx*ln1/x=e^lim(x->0+)(-tanx*lnx)=e^0=1
8.
原式=lim(x->0)e^2/x*ln(1-sinx)=lim(x->0)e^(-2sinx)/x=e^(-2)
1:证:欲证4是f(x)的一个周期,等价于对所有的x∈R有f(x)=f(x+4)
∵f(x)=-f(x+2)
∴f(x+2)=-f(x+4)
∴f(x)=f(x=4)
得证。
变式:同理,∵对所有的x∈R,f(x+2)=-1/f(x),
∴对所有的x∈R,f(x)≠0
∴f(x+4)=-1/f(x+2)=f(x)
得证。
2:证:∵f(x)是偶函数,所以有f(x)=f(-x)
又f(x)以2为周期,所以有f(x)=f(x-2)
∴f(3.5)=f(3.5-2)=f(1.5)=f(1.5-2)
=f(-0.5)=f(0.5)=0.52=0.25
4.
原式=lim(x->+**)1/x/1/x=1
5.
原式=lim(x->1)(1-x)/cosπx/2=lim(x->1)-1/-π/2*sinπx/2=2/π
6.
原式=lim(x->0+)(1/x-1/x)=0
7.
原式=lim(x->0+)e^tanx*ln1/x=e^lim(x->0+)(-tanx*lnx)=e^0=1
8.
原式=lim(x->0)e^2/x*ln(1-sinx)=lim(x->0)e^(-2sinx)/x=e^(-2)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯