证明:等腰三角形两腰上的高线相等。已知,如图,在△ABC中,AB=AC,BE,CD是△ABC的高线。求证:BD=CE
答案:1 悬赏:30 手机版
解决时间 2021-03-23 02:55
- 提问者网友:不爱我么
- 2021-03-22 10:41
最佳答案
- 五星知识达人网友:十鸦
- 2021-03-22 12:04
因为CD、BE分别是等腰三角形ABC的高线
所以CD⊥AB,BE⊥AC
所以△ADC和△AEB是直角三角形
而∠DAC=∠EAB(公共角)
AB=AC(已知)
所以RT△ABE全等于RT△ACD(AAS)
所以BE=CD(全等三角形的对应边相等)
您好,很高兴为您解答,OutsiderL夕为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳,手机客户端右上角评价点满意即可。
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
所以CD⊥AB,BE⊥AC
所以△ADC和△AEB是直角三角形
而∠DAC=∠EAB(公共角)
AB=AC(已知)
所以RT△ABE全等于RT△ACD(AAS)
所以BE=CD(全等三角形的对应边相等)
您好,很高兴为您解答,OutsiderL夕为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳,手机客户端右上角评价点满意即可。
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯