A、B、C、D、E五个车站的距离如图所示(单位:km).
(1)求D、E两站的距离;
(2)如果b=4,D为线段AE的中点,求a的值;
(3)在(2)的条件下,A、B、C、D、E这五个站中,应设计多少种不同价格(指任意两站之间的车票价格)的车票?
A、B、C、D、E五个车站的距离如图所示(单位:km).(1)求D、E两站的距离;(2)如果b=4,D为线段AE的中点,求a的值;(3)在(2)的条件下,A、B、C、
答案:2 悬赏:0 手机版
解决时间 2021-12-24 07:22
- 提问者网友:趣果有间
- 2021-12-23 20:08
最佳答案
- 五星知识达人网友:走死在岁月里
- 2021-12-23 21:12
解:(1)DE=CE-CD
=(3a-b)-(2a-3b)
=3a-b-2a+3b
=a+2b;
(2)∵D为线段AE的中点,
∴AD=DE,
即a+b+(2a-3b)=a+2b,
∴a=2b,
∵b=4km,
∴a=8km;
(3)共有10条线段,其中AD=DE、BC=CD、AB=BD,
故共有7种不同的票价.解析分析:(1)直接用CE的长度减去CD的长度,整理即可;
(2)根据AD=DE列式并把b=4代入即可求出a=8;
(3)A、B、C、D、E共有五站,10条线段,再找出相等的线段有3条,所以应设计7种车票.点评:本题考查整式的运算和利用中点性质求解.
=(3a-b)-(2a-3b)
=3a-b-2a+3b
=a+2b;
(2)∵D为线段AE的中点,
∴AD=DE,
即a+b+(2a-3b)=a+2b,
∴a=2b,
∵b=4km,
∴a=8km;
(3)共有10条线段,其中AD=DE、BC=CD、AB=BD,
故共有7种不同的票价.解析分析:(1)直接用CE的长度减去CD的长度,整理即可;
(2)根据AD=DE列式并把b=4代入即可求出a=8;
(3)A、B、C、D、E共有五站,10条线段,再找出相等的线段有3条,所以应设计7种车票.点评:本题考查整式的运算和利用中点性质求解.
全部回答
- 1楼网友:猎心人
- 2021-12-23 21:41
这个答案应该是对的
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯