(2013?淄博二模)在如图所示的几何体中,△ABC是边长为2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面A
答案:1 悬赏:0 手机版
解决时间 2021-11-16 23:46
- 提问者网友:疯孩纸
- 2021-11-16 16:21
(2013?淄博二模)在如图所示的几何体中,△ABC是边长为2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面A
最佳答案
- 五星知识达人网友:杯酒困英雄
- 2021-11-16 17:29
证明:(Ⅰ) 取BC的中点M,连接DM、AM,由已知可得DM=1,DM⊥BC,AM⊥BC.
又因为平面BCD⊥平面ABC,所以DM⊥平面ABC.…(2分)
因为AE⊥平面ABC,所以,AE∥DM.…(4分)
又因为AE?平面BCD,DM?平面BCD,所以AE∥平面BCD.…(6分)
(Ⅱ)由(Ⅰ)知AE∥DM,又AE=1,DM=1,
所以四边形DMAE是平行四边形,则有DE∥AM.
因为AM⊥平面BCD,所以DE⊥平面BCD.…(8分)
又CD?平面BCD,所以DE⊥CD.
由已知BD⊥CD,则CD⊥平面BDE.…(10分)
因为CD?平面CDE,所以,平面BDE⊥平面CDE.…(12分)
又因为平面BCD⊥平面ABC,所以DM⊥平面ABC.…(2分)
因为AE⊥平面ABC,所以,AE∥DM.…(4分)
又因为AE?平面BCD,DM?平面BCD,所以AE∥平面BCD.…(6分)
(Ⅱ)由(Ⅰ)知AE∥DM,又AE=1,DM=1,
所以四边形DMAE是平行四边形,则有DE∥AM.
因为AM⊥平面BCD,所以DE⊥平面BCD.…(8分)
又CD?平面BCD,所以DE⊥CD.
由已知BD⊥CD,则CD⊥平面BDE.…(10分)
因为CD?平面CDE,所以,平面BDE⊥平面CDE.…(12分)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯