计算:1002-992+982-972+…+22-12.
答案:2 悬赏:0 手机版
解决时间 2021-01-22 18:56
- 提问者网友:人生佛魔见
- 2021-01-22 10:19
计算:1002-992+982-972+…+22-12.
最佳答案
- 五星知识达人网友:轮獄道
- 2021-01-22 11:09
解:1002-992+982-972+…+22-12
=(1002-12)-(992-22)+(982-32)-…+(522-492)-(512-502)
=(100+1)(100-1)-(99+2)(99-2)+(98+3)(98-3)-…+(52+49)(52-49)-(51+50)(51-50)
=101×99-101×97+101×95-…+101×3-101×1
=101×(99-97+95-…+3-1)
=101×(2+2+…+2)
=101×25×2
=5050.解析分析:把所求的式子的第一项与最后一项结合,第二项与倒数第二项结合,依次结合了50组,把结合后的偶次项提取-1,然后分别运用平方差公式变形,提取101后得到25个2相加,从而计算出结果.点评:此题考查了平方差公式的运用,技巧性比较强,要求学生多观察式子的特点,注意结合的方法,找到第一项与最后一项结合,第二项与倒数第二项结合,依此类推的结合方法是解本题的关键.
=(1002-12)-(992-22)+(982-32)-…+(522-492)-(512-502)
=(100+1)(100-1)-(99+2)(99-2)+(98+3)(98-3)-…+(52+49)(52-49)-(51+50)(51-50)
=101×99-101×97+101×95-…+101×3-101×1
=101×(99-97+95-…+3-1)
=101×(2+2+…+2)
=101×25×2
=5050.解析分析:把所求的式子的第一项与最后一项结合,第二项与倒数第二项结合,依次结合了50组,把结合后的偶次项提取-1,然后分别运用平方差公式变形,提取101后得到25个2相加,从而计算出结果.点评:此题考查了平方差公式的运用,技巧性比较强,要求学生多观察式子的特点,注意结合的方法,找到第一项与最后一项结合,第二项与倒数第二项结合,依此类推的结合方法是解本题的关键.
全部回答
- 1楼网友:过活
- 2021-01-22 12:38
谢谢了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯