二阶偏导数4个公式
答案:1 悬赏:70 手机版
解决时间 2021-11-11 11:53
- 提问者网友:斑駁影
- 2021-11-10 16:54
二阶偏导数4个公式
最佳答案
- 五星知识达人网友:梦中风几里
- 2021-11-10 18:17
z=x/√(x²+y²)
∂z/∂x=[√(x²+y²)-x·2x/2√(x²+y²)]/(x²+y²)=y²/[(x²+y²)^(3/2)]
∂z/∂y=-x·2y/2√(x²+y²)^(3/2)]=-xy/[(x²+y²)^(3/2)]
∂²z/∂x²=-(3/2)y²·2x/[(x²+y²)^(5/2)]=-3xy²/[(x²+y²)^(5/2)]
∂²z/∂x∂y=[2y·[(x²+y²)^(3/2)-y²·(3/2)·[(x²+y²)^(1/2)2y]/[(x²+y²)³]
=(2x²y-y³)/[(x²+y²)^(5/2)]
∂²z/∂y²=(2xy²-x³)/[(x²+y²)^(5/2)]
∂z/∂x=[√(x²+y²)-x·2x/2√(x²+y²)]/(x²+y²)=y²/[(x²+y²)^(3/2)]
∂z/∂y=-x·2y/2√(x²+y²)^(3/2)]=-xy/[(x²+y²)^(3/2)]
∂²z/∂x²=-(3/2)y²·2x/[(x²+y²)^(5/2)]=-3xy²/[(x²+y²)^(5/2)]
∂²z/∂x∂y=[2y·[(x²+y²)^(3/2)-y²·(3/2)·[(x²+y²)^(1/2)2y]/[(x²+y²)³]
=(2x²y-y³)/[(x²+y²)^(5/2)]
∂²z/∂y²=(2xy²-x³)/[(x²+y²)^(5/2)]
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯