永发信息网

已知向量a=(tanx,1),b=(sinx,cosx),其中x属于[0,π/3,f(x)=a X

答案:2  悬赏:80  手机版
解决时间 2021-02-08 03:32
  • 提问者网友:骨子里的高雅
  • 2021-02-07 20:41
已知向量a=(tanx,1),b=(sinx,cosx),其中x属于[0,π/3,f(x)=a X
最佳答案
  • 五星知识达人网友:一把行者刀
  • 2021-02-07 22:04
tanxsinx+cosx=sin^2x/cosx+cos^2x/cosx=(1)/cosx[0,π/3],cosx单调递减,最小值为1/2所以1/cosx最大值为2======以下答案可供参考======供参考答案1:f(x)=tanxsinx+cosx=tan^2xcosx+cosx=cosx(tan^2x+1)=cosxsec^2x=secx,x属于[0,π/3];由于f(x)=secx=1/cosx,在区间[0,π/3]上cosx为减函数,它的最小值是1/2,所以f(x)的最大值是2。。
全部回答
  • 1楼网友:duile
  • 2021-02-07 22:35
我好好复习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯