四边形ABCD中,∠B=135°,∠C=120°,AB=2根号3,BC=4-2根号2,CD=4根号2,则AD边的长为________ 答案为2+2根号6,
这个图啊
四边形ABCD中,∠B=135°,∠C=120°,AB=2根号3,BC=4-2根号2,CD=4根号2,则AD边的长为__
答案:1 悬赏:30 手机版
解决时间 2021-08-19 18:32
- 提问者网友:咪咪
- 2021-08-19 06:43
最佳答案
- 五星知识达人网友:英雄的欲望
- 2021-08-19 07:19
分别从B点和C点向AD边作垂线,垂足分别为M和N
则MN=BC=4-2根号2
∠ABM=135°-90°=45°,∴AM=AB×sin∠ABM=√2/2×AB=√6
∠DCN=120°-90°=30°,∴DN=CD×sin∠DCN=1/2×CD=2√2
AD=AM+MN+ND=4+√6
应该是4+√6吧
再问: ∠DCN=30°?! PS麻烦再帮帮我这道题http://zhidao.baidu.com/question/307367597.html
再答: 是30° 有问题吗?
再问: 是这个图唉。。
再答: 连接BD,在△BCD中用余弦定理求得:BD²=BC²+CD²-2BC*CDcos120°=40 ∴BD=2√10 由正弦定理BD/sin120°=DC/sin∠DBC ∴sin∠DBC=√15/5 cos∠DBC=√(1-sin²∠DBC)=√10/5 cos∠ABD=cos(135°-∠DBC)=(-√2/2)*√10/5+(√2/2)*√15/5=-√5/5+√30/10 在△ABD中用余弦定理求得:AD²=AB²+BD²-2AB*BDcos(∠ABD)=28-8√6=4-8√6+24=(2+2√6)² ∴AD=2+2√6 方法二: 也可以用几何方法,过A和D点向BC作垂线,垂足为M和N 那么BM=AM=√6,CN=2√2,DN=2√6 过A向DN做垂线AE,则AE=BM+BC+CN=4+√6 DE=DN-AB=√6 那么AD²=AE²+DE²=16+8√6+6+6=28+8√6=(2+2√6)² ∴∴AD=2+2√6
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯