如图,过正方形ABCD的顶点A作直线交BD于E,交CD于F,交BC的延长线于G.若H是FG的中点,求证:EC⊥CH.
答案:2 悬赏:30 手机版
解决时间 2021-01-23 07:59
- 提问者网友:缘字诀
- 2021-01-22 15:23
如图,过正方形ABCD的顶点A作直线交BD于E,交CD于F,交BC的延长线于G.若H是FG的中点,求证:EC⊥CH.
最佳答案
- 五星知识达人网友:山有枢
- 2021-01-22 15:50
证明:∵AD=CD,∠ADE=∠CDE,
∴△ADE≌△CDE,
∴∠DAE=∠DCE,
∵AD∥BC,
∴∠DAE=∠G=∠ECD,
∵H是FG的中点,
∴CH=HF,
∴∠HCF=∠HFC,
∵∠CFG+∠G=90°,
∴∠ECF+∠HCF=90°,
即EC⊥CH.解析分析:先根据正方形的性质得到△ADE≌△CDE,所以∠DAE=∠DCE,利用AD∥BC,得到∠DAE=∠G=∠ECD,所以根据三角形内角和与等量代换可知∠ECF+∠HCF=90°即EC⊥CH.点评:主要考查了正方形的性质和三角形全等的性质及判定.注意正方形是特殊条件最多的特殊平行四边形.要掌握才会灵活运用.
∴△ADE≌△CDE,
∴∠DAE=∠DCE,
∵AD∥BC,
∴∠DAE=∠G=∠ECD,
∵H是FG的中点,
∴CH=HF,
∴∠HCF=∠HFC,
∵∠CFG+∠G=90°,
∴∠ECF+∠HCF=90°,
即EC⊥CH.解析分析:先根据正方形的性质得到△ADE≌△CDE,所以∠DAE=∠DCE,利用AD∥BC,得到∠DAE=∠G=∠ECD,所以根据三角形内角和与等量代换可知∠ECF+∠HCF=90°即EC⊥CH.点评:主要考查了正方形的性质和三角形全等的性质及判定.注意正方形是特殊条件最多的特殊平行四边形.要掌握才会灵活运用.
全部回答
- 1楼网友:深街酒徒
- 2021-01-22 17:00
对的,就是这个意思
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯