如图,点D是△ABC内一点,把△ABD绕点B顺时针方向旋转60°得到△CBE,若AD=4,BD=3,CD=5.
(1)判断△DEC的形状,并说明理由;
(2)求∠ADB的度数.
如图,点D是△ABC内一点,把△ABD绕点B顺时针方向旋转60°得到△CBE,若AD=4,BD=3,CD=5.(1)判断△DEC的形状,并说明理由;(2)求∠ADB的
答案:2 悬赏:10 手机版
解决时间 2021-01-03 20:32
- 提问者网友:人生佛魔见
- 2021-01-02 22:52
最佳答案
- 五星知识达人网友:梦中风几里
- 2021-01-02 23:12
解:(1)根据图形的旋转不变性,
AD=EC,
BD=BE,
又因为∠DBE=∠ABC=60°,
所以△ABC和△DBE均为等边三角形,
于是DE=BD=3,
EC=AD=4,
又因为CD=5,
所以DE2+EC2=32+42=52=CD2;
故△DEC为直角三角形.
(2)因为△DEC为直角三角形,
所以∠DEC=90°,
又因为△BDE为等边三角形,
所以∠BED=60°,
故∠BEC=90°+60°=150°,
即∠ADB=150°.解析分析:(1)根据旋转的性质,证出△ADB≌△CEB,根据全等三角形的性质,得到AD=CE,再结合△ABD绕点B顺时针方向旋转60°得到△BDE为等边三角形,再根据勾股定理逆定理,判断出△DEC为直角三角形.
(2)根据△ADB≌△CEB,得到∠BDA=∠BEC,求出∠BEC的度数即可.点评:此题考查了图形的旋转不变性、全等三角形的性质、等边三角形的性质、勾股定理的逆定理等知识,
综合性较强,是一道好题.解答(2)时要注意运用(1)的结论.
AD=EC,
BD=BE,
又因为∠DBE=∠ABC=60°,
所以△ABC和△DBE均为等边三角形,
于是DE=BD=3,
EC=AD=4,
又因为CD=5,
所以DE2+EC2=32+42=52=CD2;
故△DEC为直角三角形.
(2)因为△DEC为直角三角形,
所以∠DEC=90°,
又因为△BDE为等边三角形,
所以∠BED=60°,
故∠BEC=90°+60°=150°,
即∠ADB=150°.解析分析:(1)根据旋转的性质,证出△ADB≌△CEB,根据全等三角形的性质,得到AD=CE,再结合△ABD绕点B顺时针方向旋转60°得到△BDE为等边三角形,再根据勾股定理逆定理,判断出△DEC为直角三角形.
(2)根据△ADB≌△CEB,得到∠BDA=∠BEC,求出∠BEC的度数即可.点评:此题考查了图形的旋转不变性、全等三角形的性质、等边三角形的性质、勾股定理的逆定理等知识,
综合性较强,是一道好题.解答(2)时要注意运用(1)的结论.
全部回答
- 1楼网友:动情书生
- 2021-01-02 23:27
和我的回答一样,看来我也对了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯