如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树
答案:2 悬赏:0 手机版
解决时间 2021-12-20 16:18
- 提问者网友:练爱
- 2021-12-20 13:24
如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?
最佳答案
- 五星知识达人网友:神也偏爱
- 2021-12-20 13:39
解:设FG=x米.那么FH=x+GH=x+AC=x+4(米),
∵AB=6m,CD=8m,小强的眼睛与地面的距离为1.6m,
∴BG=4.4m,DH=6.4m,
∵BA⊥PC,CD⊥PC,
∴AB∥CD,
∴FG:FH=BG:DH,即FG?DH=FH?BG,
∴x×6.4=(x+4)×4.4,
解得x=8.8(米),
因此小于8.8米时就看不到树CD的树顶D.解析分析:根据盲区的定义结合图片,我们可看出在FG之间时,是看不到树CD的树顶D的.因此求出FG就是本题的关键.
已知了AC的长,BG、DH的长,那么可根据平行线分线段成比例来得出关于FG、FH、BG、DH的比例关系式,用FG表示出FG后即可求出FG的长.点评:本题主要考查了平行线分线段成比例的实际应用,利用数学知识解决实际问题是中学数学的重要内容.
解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
∵AB=6m,CD=8m,小强的眼睛与地面的距离为1.6m,
∴BG=4.4m,DH=6.4m,
∵BA⊥PC,CD⊥PC,
∴AB∥CD,
∴FG:FH=BG:DH,即FG?DH=FH?BG,
∴x×6.4=(x+4)×4.4,
解得x=8.8(米),
因此小于8.8米时就看不到树CD的树顶D.解析分析:根据盲区的定义结合图片,我们可看出在FG之间时,是看不到树CD的树顶D的.因此求出FG就是本题的关键.
已知了AC的长,BG、DH的长,那么可根据平行线分线段成比例来得出关于FG、FH、BG、DH的比例关系式,用FG表示出FG后即可求出FG的长.点评:本题主要考查了平行线分线段成比例的实际应用,利用数学知识解决实际问题是中学数学的重要内容.
解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
全部回答
- 1楼网友:忘川信使
- 2021-12-20 14:23
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯