用五种方法解出不定积分∫1/(1+sinX)dx
答案:2 悬赏:80 手机版
解决时间 2021-12-02 04:37
- 提问者网友:了了无期
- 2021-12-01 10:57
当然有更多的方法更好
最佳答案
- 五星知识达人网友:封刀令
- 2019-03-31 23:41
我就提供第一种方法先
∫dx/(1+sinx)使用代换,令F=tan(x/2),x=2arctanF
dx=2/(F²+1)dF
原式=2∫[{1/(F²+1)]/[1+sin(2arctanF)]}dF
=2∫{[1/(F²+1)]/[1+2F/(1+F²)]}dF
=2∫{[1/(F²+1)]/[(1+F²)+2F/(1+F²)]}dF
=2∫[dF/(1+2F+F²)]
=2∫[dF/(1+F)²]
=-2/(1+F)+C
代回=-2/[1+tan(x/2)]+C
~~~~~~~~~~~~~~~~~~~~~~
∫dx/(1+sinx)使用代换,令F=tan(x/2),x=2arctanF
dx=2/(F²+1)dF
原式=2∫[{1/(F²+1)]/[1+sin(2arctanF)]}dF
=2∫{[1/(F²+1)]/[1+2F/(1+F²)]}dF
=2∫{[1/(F²+1)]/[(1+F²)+2F/(1+F²)]}dF
=2∫[dF/(1+2F+F²)]
=2∫[dF/(1+F)²]
=-2/(1+F)+C
代回=-2/[1+tan(x/2)]+C
~~~~~~~~~~~~~~~~~~~~~~
全部回答
- 1楼网友:等灯
- 2021-01-29 17:16
解答:解法一:万能代换!
令u=tanx/2,则sinx=2u/(1+u²),cosx=(1-u²)/(1+u²),dx=2du/(1+u²),于是得
∫1/(sinx+cosx)=∫2/(1+2u-u²)du
=√2/2∫[1/(u-(1-√2))-1/(u-(1+√2))]du
=√2/2ln|(u-(1-√2))/(u-(1+√2))|+c
=√2/2ln|(tanx/2-1+√2)/(tanx/2-1-√2)+c.
解法二:
∫dx/(sinx+cosx)=√2/2∫dx/(√2/2sinx+√2/2cosx)=√2/2∫dx/cos(x-π/4)
=√2/2∫sec(x-π/4)d(x-π/4)
=√2/2ln|sec(x-π/4)+tan(x-π/4)|+c.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯