永发信息网

如果不用数学归纳法,如何证明当n是自然数时,n(n+1)(2n+1)能被6整除?

答案:1  悬赏:60  手机版
解决时间 2021-08-14 22:54
  • 提问者网友:爱了却不能说
  • 2021-08-14 00:59
如果不用数学归纳法,如何证明当n是自然数时,n(n+1)(2n+1)能被6整除?
最佳答案
  • 五星知识达人网友:woshuo
  • 2021-08-14 01:50

没有楼上解得那么麻烦,而且如果知道n(n+1)(2n+1)=1^2+2^2...+n^2,也不用证了,
思路:只要能证明n(n+1)(2n+1)能同时被2和3整除,n(n+1)(2n+1)就能被6整除.
证:
n,n+1必为一奇一偶,n(n+1)(2n+1)能被2整除.
是否能被3整除,需要分类讨论.
n为3的倍数时,n(n+1)(2n+1)能被3整除.
n不是3的倍数时,n=3k+1或n=3k+2(k为自然数,包括0).
n=3k+2时,n+1=3k+2+1=3(k+1),是3的倍数,n(n+1)(2n+1)能被3整除.
n=3k+1时,2n+1=2(3k+1)+1=6k+3=3(2k+1),是3的倍数,n(n+1)(2n+1)能被3整除.
综上,n(n+1)(2n+1)能同时被2和3整除,因此能被6整除.


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯