已知函数f(x)=sin(x π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)
答案:1 悬赏:20 手机版
解决时间 2021-03-10 08:55
- 提问者网友:謫仙
- 2021-03-09 09:58
若f(x)在区间[-π/3,0]上单调递增,且恰好能够取到f(x)的最小值2,试求a、b的值
最佳答案
- 五星知识达人网友:鸽屿
- 2021-03-09 10:25
f(x)=sin(x π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)
应该是f(x)=sin(x +π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)???
f(x)=sin(x+ π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)
=2sinxcosπ/6+acosx+b
=√3sinx+acosx+b
=√(3+a^2)sin(x+θ)+b (sinθ=a/√(3+a^2),cosθ=√3/√(3+a^2),
f(x)在区间[-π/3,0]上单调递增,且恰好能够取到f(x)的最小值2
∴-π/3+θ=-π/2,b-√(3+a^2)=2
θ=-π/6
a=-1,b=2+2=4
应该是f(x)=sin(x +π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)???
f(x)=sin(x+ π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)
=2sinxcosπ/6+acosx+b
=√3sinx+acosx+b
=√(3+a^2)sin(x+θ)+b (sinθ=a/√(3+a^2),cosθ=√3/√(3+a^2),
f(x)在区间[-π/3,0]上单调递增,且恰好能够取到f(x)的最小值2
∴-π/3+θ=-π/2,b-√(3+a^2)=2
θ=-π/6
a=-1,b=2+2=4
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯