永发信息网

已知:如图所示,AC,BD相交于点O,BE,CE分别平分∠ABD,∠ACD,∠A=50°,∠D=44°,求∠E的度数.

答案:2  悬赏:70  手机版
解决时间 2021-03-21 12:10
  • 提问者网友:萌卜娃娃
  • 2021-03-20 17:08
已知:如图所示,AC,BD相交于点O,BE,CE分别平分∠ABD,∠ACD,∠A=50°,∠D=44°,求∠E的度数.
最佳答案
  • 五星知识达人网友:一叶十三刺
  • 2021-03-20 17:22
解:∵∠BNC=∠D+∠DCN,∠BNC=∠E+∠EBN(三角形的外角等于两个不相邻的内角的和),
∴∠D+∠DCN=∠E+∠EBN(等量代换),
同理:∠A+∠ABE=∠E+∠ACE,
∴∠D+∠DCN+∠A+∠ABE=2∠E+∠EBN+∠ACE(等式性质),
∵BE,CE分别平分∠ABD,∠ACD,
∴∠DCN=∠ACE,∠ABE=∠EBN(角平分线的定义),
∴∠D+∠A=2∠E(等式性质),
∵∠A=50°,∠D=44°,
∴∠E=47°.解析分析:运用三角形的外角等于两个不相邻的内角的和,可得∠D+∠DCN=∠E+∠EBN,∠A+∠ABE=∠E+∠ACE,再根据角平分线的定义和等式的性质可得∠D+∠A=2∠E,从而求出∠E的度数.点评:本题考查了三角形外角的性质、角平分线的性质和等式的性质,注意灵活运用这些性质解题.
全部回答
  • 1楼网友:山君与见山
  • 2021-03-20 17:39
谢谢回答!!!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯