若直线y=kx+4与圆x^2+y^2=1或与曲线y^2=x有交点,则k的取值范围为?
若直线y=kx+4与圆x^2+y^2=1或与曲线y^2=x有交点,则k的取值范围为?
答案:1 悬赏:60 手机版
解决时间 2021-05-13 22:15
- 提问者网友:不爱我么
- 2021-05-13 07:35
最佳答案
- 五星知识达人网友:北城痞子
- 2021-05-13 08:33
将y=kx+4代入x^2+y^2=1:
(k²+1)x² + 8kx + 15 = 0
判别式△=64k² -60(k²+1) = 4(k²-15)
若二者有交点,△≥0,k ≥ √15或k ≤ -√15
将y=kx+4代入y^2=x:
k²x² +(8k-1)x + 16 = 0
判别式△=1-16k
若二者有交点,△≥0,k ≤ 1/16
若直线y=kx+4与二者之一有交点即可,解为二者的并集,即k ≥ √15或k ≤ 1/16
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯