求值:(2+1)x(2²+1)x(2^4+1)x(2^8+1)...(2^64+10+1
答案:2 悬赏:80 手机版
解决时间 2021-03-05 08:11
- 提问者网友:半生酒醒
- 2021-03-04 13:54
求值:(2+1)x(2²+1)x(2^4+1)x(2^8+1)...(2^64+10+1
最佳答案
- 五星知识达人网友:执傲
- 2021-03-04 14:12
=1×(2+1)×(2^2+1)x(2^4+1)x(2^8+1)...(2^64+1)+1
=(2-1)×(2+1)×(2^2+1)x(2^4+1)x(2^8+1)...(2^64+1)+1
=(2^2-1)×(2^2+1)x(2^4+1)x(2^8+1)...(2^64+1)+1
反复用平方差
=2^128-1+1
=2^128
=(2-1)×(2+1)×(2^2+1)x(2^4+1)x(2^8+1)...(2^64+1)+1
=(2^2-1)×(2^2+1)x(2^4+1)x(2^8+1)...(2^64+1)+1
反复用平方差
=2^128-1+1
=2^128
全部回答
- 1楼网友:枭雄戏美人
- 2021-03-04 14:40
(2+1)(2^2+1)(2^4+1)(2^8+1)x...x(2^512+1)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)x...x(2^512+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)x...x(2^512+1)
=(2^4-1)(2^4+1)(2^8+1)x...x(2^512+1)
=...
=(2^512-1)(2^512+1)
=2^1024-1
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯