已知函数f(x)=x^2+x-ln(x+1).(Ⅰ)若关于x的方程f(x)=(5/2)x+m在区间[0,2]上恰有两个不同的实数根,求实数
已知函数f(x)=x^2+x-ln(x+1).
(Ⅰ)若关于x的方程f(x)=(5/2)x+m在区间[0,2]上恰有两个不同的实数根,求实数m的取值范围.
(Ⅱ)证明:对任意正整数n>1,不等式1+1/2+1/3+·······1/(n-1)>ln[(n+1)/2]都成立.
已知函数f(x)=x^2+x-ln(x+1).(Ⅰ)若关于x的方程f(x)=(5/2)x+m在区间[0,2]上恰有两个不
答案:1 悬赏:0 手机版
解决时间 2021-04-05 03:56
- 提问者网友:我是女神我骄傲
- 2021-04-04 04:19
最佳答案
- 五星知识达人网友:蕴藏春秋
- 2021-04-04 05:55
f(x)=x^2+x-ln[x+1]
(1)若关于x的方程f(x)=5x/2+m在区间[0,2]上恰有两个不同的实数根,求实数m的取值范围;
f(x)=x^2+x-ln[x+1]=5x/2+m
化简得:x^2-3x/2-ln[x+1]-m=0
记g(x)= x^2-3x/2-ln[x+1]-m
g(x)的定义域为:x>-1
由g’(x)=2x-3/2-1/(x+1)=0,解得:x=-5/4(舍去)或1
所以g(x)只有一个极值点x=1,位于[0,2],且取得最小值.
所以在区间[0,2]上恰有两个不同的实数根,要求:
g(1)ln{(k+1)/2}成立
则n=k+1时,
左边=1+1/2+1/3+……+1/k-1+1/k>ln{(k+1)/2}+1/k
右边=ln{(k+2)/2}
目标证明:
ln{(k+1)/2}+1/k>ln{(k+2)/2}
等价:1/k>ln{(k+2)/2}-ln{(k+1)/2}=ln[(k+2)/(k+1)]
等价:e^(1/k)>(k+2)/(k+1)=1+1/(k+1)
等价:e>{1+1/(k+1)}^k
由于f(k)={1+1/(k+1)}^k的极限为e,且为递增函数.
所以e>{1+1/(k+1)}^k成立.
因此n=k+1时,不等式也成立
即对于所有n>1不等式1+1/2+1/3+……+1/n-1>ln{(n+1)/2}成立.
故得证.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯