关于动物生理学的
答案:1 悬赏:50 手机版
解决时间 2021-04-20 20:57
- 提问者网友:浮克旳回音
- 2021-04-20 12:40
静息电位和动作电位产生的机制
最佳答案
- 五星知识达人网友:封刀令
- 2021-04-20 12:58
一、静息电位及其产生机制
(一)静息电位
静息电位是指细胞在安静状态下,存在于细胞膜的电位差。这个差值在不同的细胞是不一样的,就神经纤维而言为膜外电位比膜内电位高70~90mv。如规定膜外电位为0,则膜内电位当为负值(-70~-90mv)。细胞在安静状态时,保持比较稳定的外正内负的状态,称为极化。极化状态是细胞处于生理静息状态的标志。以静息电位为准,膜内负电位增大,称为超极化。膜内负电位减小,称为去或除极化。细胞兴奋后,膜电位又恢复到极化状态,称为复极化。
(二)静息电位产生的机制
“离子学说”认为,细胞水平生物电产生的前提有二:①细胞内外离子分布和浓度不同。就正离子来说,膜内K+浓度较高,约为膜外的30倍。膜外Na+浓度较高约为膜内的10倍。从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。②细胞膜在不同的情况下,对不同离子的通透性并不一样,如在静息状态下,膜对K+的通透性大,对Na+的通透性则很小。对膜内大分子A-则无通透性。
由于膜内外存在着K+浓度梯度,而且在静息状态下,膜对K+又有较大的通透性(K+通道开放),所以一部分K+便会顺着浓度梯度向膜外扩散,即K+外流。膜内带负电荷的大分子A-,由于电荷异性相吸的作用,也应随K+外流,但因不能透过细胞膜而被阻止在膜的内表面,致使膜外正电荷增多,电位变正,膜内负电荷增多,电位变负。这样膜内外之间便形成了电位差,它在膜外排斥K+外流,在膜内又牵制K+的外流,于是K+外流逐渐减少。当促使K+流的浓度梯度和阻止K+外流的电梯度这两种抵抗力量相等时,K+的净外流停止,使膜内外的电位差保持在一个稳定状态。因此,可以说静息电位主要是K+外流所形成的电一化学平衡电位。
二、动作电位及其产生机制
(一)动作电位
细胞受刺激时,在静息电位的基础上发生一次短暂的扩布性的电位变化,这种电位变化称为动作电位。
实验观察,动作电位包括一个上升相和一个下降相(图2-3)。上升相代表膜的去极化过程。以 0mv电位为界,上升相的下半部分为膜的去极化,是膜内负电位减小,由-70~-90mv.变为0mv;上升相的上半部分是膜的反极化(超射),是膜电位的极性发生倒转即膜外变负,膜内变正,由0mv上升到+20~40mv。上升相膜内电位上升幅度约为90~130mv。下降相代表膜的复极化过程。它是膜内电位从上升相顶端下降到静息电位水平的过程。由于动作电位幅度大、时间短不超过2ms,波形很象一个尖峰,故又称峰电位。在峰电位完全恢复到静息电位水平之前,膜两侧还有微小的连续缓慢的电变化,称为后电位。
(二)动作电位产生的机制
动作电位产生的机制与静息电位相似,都与细胞膜的通透性及离子转运有关。
l.去极化过程 当细胞受刺激而兴奋时,膜对Na+通透性增大,对K+通透性减小,于是细胞外的Na+便会顺其波度梯度和电梯度向胞内扩散,导致膜内负电位减小,直至膜内电位比膜外高,形成内正外负的反极化状态。当促使Na+内流的浓度梯度和阻止Na+内流的电梯度,这两种拮抗力量相等时,Na+的净内流停止。因此,可以说动作电位的去极化过程相当于Na+内流所形成的电一化学平衡电位。
2.复极化过程 当细胞膜除极到峰值时,细胞膜的Na+通道迅速关闭,而对K+的通透性增大,于是细胞内的K+便顺其浓度梯度向细胞外扩散,导致膜内负电位增大,直至恢复到静息时的数值。
可兴奋细胞每发生一次动作电位,总会有一部分Na+在去极化中扩散到细胞内,并有一部分K+在复极过程中扩散到细胞外。这样就激活了Na+-K+依赖式ATP酶即Na+-K+泵,于是钠泵加速运转,将胞内多余的Na+泵出胞外,同时把胞外增多的K+泵进胞内,以恢复静息状态的离子分布,保持细胞的正常兴奋性。如果说静息电位是兴奋性的基础,那么,动作电位是可兴奋细胞兴奋的标志
(一)静息电位
静息电位是指细胞在安静状态下,存在于细胞膜的电位差。这个差值在不同的细胞是不一样的,就神经纤维而言为膜外电位比膜内电位高70~90mv。如规定膜外电位为0,则膜内电位当为负值(-70~-90mv)。细胞在安静状态时,保持比较稳定的外正内负的状态,称为极化。极化状态是细胞处于生理静息状态的标志。以静息电位为准,膜内负电位增大,称为超极化。膜内负电位减小,称为去或除极化。细胞兴奋后,膜电位又恢复到极化状态,称为复极化。
(二)静息电位产生的机制
“离子学说”认为,细胞水平生物电产生的前提有二:①细胞内外离子分布和浓度不同。就正离子来说,膜内K+浓度较高,约为膜外的30倍。膜外Na+浓度较高约为膜内的10倍。从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。②细胞膜在不同的情况下,对不同离子的通透性并不一样,如在静息状态下,膜对K+的通透性大,对Na+的通透性则很小。对膜内大分子A-则无通透性。
由于膜内外存在着K+浓度梯度,而且在静息状态下,膜对K+又有较大的通透性(K+通道开放),所以一部分K+便会顺着浓度梯度向膜外扩散,即K+外流。膜内带负电荷的大分子A-,由于电荷异性相吸的作用,也应随K+外流,但因不能透过细胞膜而被阻止在膜的内表面,致使膜外正电荷增多,电位变正,膜内负电荷增多,电位变负。这样膜内外之间便形成了电位差,它在膜外排斥K+外流,在膜内又牵制K+的外流,于是K+外流逐渐减少。当促使K+流的浓度梯度和阻止K+外流的电梯度这两种抵抗力量相等时,K+的净外流停止,使膜内外的电位差保持在一个稳定状态。因此,可以说静息电位主要是K+外流所形成的电一化学平衡电位。
二、动作电位及其产生机制
(一)动作电位
细胞受刺激时,在静息电位的基础上发生一次短暂的扩布性的电位变化,这种电位变化称为动作电位。
实验观察,动作电位包括一个上升相和一个下降相(图2-3)。上升相代表膜的去极化过程。以 0mv电位为界,上升相的下半部分为膜的去极化,是膜内负电位减小,由-70~-90mv.变为0mv;上升相的上半部分是膜的反极化(超射),是膜电位的极性发生倒转即膜外变负,膜内变正,由0mv上升到+20~40mv。上升相膜内电位上升幅度约为90~130mv。下降相代表膜的复极化过程。它是膜内电位从上升相顶端下降到静息电位水平的过程。由于动作电位幅度大、时间短不超过2ms,波形很象一个尖峰,故又称峰电位。在峰电位完全恢复到静息电位水平之前,膜两侧还有微小的连续缓慢的电变化,称为后电位。
(二)动作电位产生的机制
动作电位产生的机制与静息电位相似,都与细胞膜的通透性及离子转运有关。
l.去极化过程 当细胞受刺激而兴奋时,膜对Na+通透性增大,对K+通透性减小,于是细胞外的Na+便会顺其波度梯度和电梯度向胞内扩散,导致膜内负电位减小,直至膜内电位比膜外高,形成内正外负的反极化状态。当促使Na+内流的浓度梯度和阻止Na+内流的电梯度,这两种拮抗力量相等时,Na+的净内流停止。因此,可以说动作电位的去极化过程相当于Na+内流所形成的电一化学平衡电位。
2.复极化过程 当细胞膜除极到峰值时,细胞膜的Na+通道迅速关闭,而对K+的通透性增大,于是细胞内的K+便顺其浓度梯度向细胞外扩散,导致膜内负电位增大,直至恢复到静息时的数值。
可兴奋细胞每发生一次动作电位,总会有一部分Na+在去极化中扩散到细胞内,并有一部分K+在复极过程中扩散到细胞外。这样就激活了Na+-K+依赖式ATP酶即Na+-K+泵,于是钠泵加速运转,将胞内多余的Na+泵出胞外,同时把胞外增多的K+泵进胞内,以恢复静息状态的离子分布,保持细胞的正常兴奋性。如果说静息电位是兴奋性的基础,那么,动作电位是可兴奋细胞兴奋的标志
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯