求证:当k≠-1时,方程x^2+y^2+2kx+(4k+10)y+10k+20=0 都表示圆,且这些圆中任意两个圆都相切
求证:当k≠-1时,方程x^2+y^2+2kx+(4k+10)y+10k+20=0 都表示圆,且这些圆中任意两个圆都相切
答案:1 悬赏:40 手机版
解决时间 2021-08-17 09:03
- 提问者网友:两耳就是菩提
- 2021-08-16 22:13
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-08-16 22:23
证明:
先将方程因式分解成为圆的形式
得(x+k)^2+(y+2k+5)^2=5k^2+10k+5
(x+k)^2+(y+2k+5)^2=5(k+1)^2
k≠-1 保证5(k+1)^2≠0
因此,方程x^2+y^2+2kx+(4k+10)y+10k+20=0 都表示圆
分别设任意k1、k2≠-1
得两个圆(x+k1)^2+(y+2k1+5)^2=5(k1+1)^2和(x+k2)^2+(y+2k2+5)^2=5(2k+1)^2
两圆的圆心距的平方d^2=(k1-k2)^2+(2k1-2k2)^2
两圆的半径之差的平方为(R1-R2)^2=(k1-k2)^2+(2k1-2k2)^2=d^2
所以任意两圆都相切
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯