永发信息网

求:limx→0,[(2/π)(cos π/2)(1-x)]/x=?

答案:1  悬赏:50  手机版
解决时间 2021-04-06 18:20
  • 提问者网友:城市野鹿
  • 2021-04-06 01:59
求:limx→0,[(2/π)(cos π/2)(1-x)]/x=?
最佳答案
  • 五星知识达人网友:一把行者刀
  • 2021-04-06 02:10
limx→0 [(2/π) cos[ π/2(1-x)] / x
= limx→0 [(2/π) sin(πx /2) / x
= limu→0sinu / u 令 u= πx /2
=1追答
追问:我想问下,你的(cos π/2)(1-x)=sin(πx /2)是怎么来的呢
追答:感觉题目应该是cos[ π/2(1-x)] = cos [ π/2 - πx/2] = sin(πx/2)
追问:我查了一下,好像题目没有错呢
追答:limx→0[(2/π) (cos π/2)(1-x)] / x ,cos(π/2) =0
= 0
追问:额,应该不会这么简单吧,如果这样就是0/0未定式了,这道题目确实有点怪,我用洛必塔法则结果也总是0,但是貌似标准答案这是一个等价无穷小啊,limx→0,[(2/π)(cos π/2)(1-x)]/x=1的
追答:等价无穷小题目应该是 [(2/π) cos[ π/2(1-x)] / x
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯