求证:方程x2-(k+6)x+4(k-3)=0一定有两个不相等的实数根.
答案:2 悬赏:20 手机版
解决时间 2021-01-24 05:15
- 提问者网友:世勋超人
- 2021-01-23 17:58
求证:方程x2-(k+6)x+4(k-3)=0一定有两个不相等的实数根.
最佳答案
- 五星知识达人网友:罪歌
- 2021-01-23 19:31
证明:∵△=(k+6)2-4×1×4(k-3)=(k-2)2+80,
而(k-2)2≥0,
∴(k-2)2+80>0,
即△>0,
所以不论k取什么实数,方程x2-(k+6)x+4(k-3)=0一定有两个不相等的实数根.解析分析:要证明不论k取什么实数,方程x2-(k+6)x+4(k-3)=0一定有两个不相等的实数根,即证明△>0即可.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了代数式的变形能力.
而(k-2)2≥0,
∴(k-2)2+80>0,
即△>0,
所以不论k取什么实数,方程x2-(k+6)x+4(k-3)=0一定有两个不相等的实数根.解析分析:要证明不论k取什么实数,方程x2-(k+6)x+4(k-3)=0一定有两个不相等的实数根,即证明△>0即可.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了代数式的变形能力.
全部回答
- 1楼网友:鱼忧
- 2021-01-23 20:06
我好好复习下
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯