经过椭圆x2/a2+y2/b2=1和y2/a2+x2/b2=1(a>b>0)的四个交点的圆的方程是
答案:1 悬赏:20 手机版
解决时间 2021-05-25 12:38
- 提问者网友:你给我的爱
- 2021-05-24 18:16
经过椭圆x2/a2+y2/b2=1和y2/a2+x2/b2=1(a>b>0)的四个交点的圆的方程是 最好有过程
最佳答案
- 五星知识达人网友:忘川信使
- 2021-05-24 18:45
四交点满足以下两方程
x2/a2+y2/b2=1 (1)
y2/a2+x2/b2=1 (2)
(1)变形为 b^2x^2+a^2y^2=a^2b^2
(2)变形为 a^2x^2+b^2y^2=a^2b^2
上两式相加得:
(a^2+b^2)(x^2+y^2)=2a^2b^2
x^2+y^2=2a^2b^2/(a^2+b^2)
即为所求圆方程
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯