设tan(α+8/7π)=a 求证sin(22π/7+α)+3cos(α-20π/7)/ sin(20π/7-α)-cos(α+22π/7)=a+3/-a
答案:2 悬赏:80 手机版
解决时间 2021-12-31 05:51
- 提问者网友:风月客
- 2021-12-30 15:57
设tan(α+8/7π)=a 求证sin(22π/7+α)+3cos(α-20π/7)/ sin(20π/7-α)-cos(α+22π/7)=a+3/-a
最佳答案
- 五星知识达人网友:醉吻情书
- 2021-12-30 16:26
tan(α+8π/7)=tan(π+α+π/7)=tan(α+π/7),即:tan(α+π/7)=a
sin(22π/7+α)+3cos(α-20π/7)/ sin(20π/7-α)-cos(α+22π/7)
=(sin(3π+π/7+α)+3cos(3π-2π/7-α))/(sin(3π-2π/7-α)-cos(3π+π/7+α))
=-(sin(π/7+α)+3cos(2π/7+α))/(sin(2π/7+α)+cos(π/7+α))
=-(sin(π/7+α)+3(cosπ/7cos(π/7+α)-sinπ/7sin(π/7+α)))/(sinπ/7cos(π/7+α)+cosπ/7sin(π/7+α)+cos(π/7+α))
=-(tan(π/7+α)+3(cosπ/7-sinπ/7tan(π/7+α)))/(sinπ/7+cosπ/7tan(π/7+α)+1)
=-(a+3(cosπ/7-asinπ/7))/(sinπ/7+acosπ/7+1)
sin(22π/7+α)+3cos(α-20π/7)/ sin(20π/7-α)-cos(α+22π/7)
=(sin(3π+π/7+α)+3cos(3π-2π/7-α))/(sin(3π-2π/7-α)-cos(3π+π/7+α))
=-(sin(π/7+α)+3cos(2π/7+α))/(sin(2π/7+α)+cos(π/7+α))
=-(sin(π/7+α)+3(cosπ/7cos(π/7+α)-sinπ/7sin(π/7+α)))/(sinπ/7cos(π/7+α)+cosπ/7sin(π/7+α)+cos(π/7+α))
=-(tan(π/7+α)+3(cosπ/7-sinπ/7tan(π/7+α)))/(sinπ/7+cosπ/7tan(π/7+α)+1)
=-(a+3(cosπ/7-asinπ/7))/(sinπ/7+acosπ/7+1)
全部回答
- 1楼网友:上分大魔王
- 2021-12-30 17:27
tan(α+8π/7)=tan(α+π/7)=a
sin(15π/7+α)=sin(π/7+α)
cos(α-13π/7)=cos(13π/7-α)=cos(π+6π/7-α)=-cos(6π/7-α)=-cos(π-π/7-α)=cos(π/7+α)
sin(20π/7-α)=sin(6π/7-α)=sin(π-π/7-α)=sin(π/7+α)
cos(α+22π/7)=cos(α+8π/7)=-cos(π/7+α)
所以
[sin(15π/7+α)+3cos(α-13π/7)]/[sin(20π/7-α)-cos(α+22π/7)]=
[sin(π/7+α)+3cos(π/7+α)]/[sin(π/7+α)+cos(π/7+α)]
=1+2cos(π/7+α)/[sin(π/7+α)+cos(π/7+α)]
因为[sin(π/7+α)+cos(π/7+α)]/2cos(π/7+α)=(1/2)*tan(α+π/7)+1/2=(a+1)/2
所以2cos(π/7+α)/[sin(π/7+α)+cos(π/7+α)]=2/(a+1)
因此原式=1+2/(a+1)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯