正弦、余弦定理公式及推导方式,高中数学竞赛几何常用求解方法(平面)
答案:3 悬赏:70 手机版
解决时间 2021-05-02 23:08
- 提问者网友:半生酒醒
- 2021-05-02 15:00
正弦、余弦定理公式及推导方式,要详细的,是否原创无所谓,最好再带点例题(网站也行)高中数学竞赛几何常用求解方法(平面),给出方法就行,和一些著名的定理。谢谢了!
最佳答案
- 五星知识达人网友:神也偏爱
- 2021-05-02 16:16
a/sinA=b/sinB=c/sinC 正弦定理
a2=b2+c2-2bccosA 余弦定理
1.在△ABC中,tanB=1,tanC=2,b=100,求a.
2.在△ABC中,A、B、C相对应的边分别是a、b、c,求acosB+bcosA.
3.在△ABC中,A、B、C相对应的边分别是a、b、c,若(a+b-c)·(sinB+sinB-sinC)=3asinB,求角C的大小。
1.在△ABC中,tanB=1,tanC=2,b=100,求a.
因为A、B、C均为△ABC的内角
所以,A、B、C∈(0,180°)
已知,tanB=1
所以,B=45°
则,sinB=cosB=√2/2
又,tanC=2>0
所以,C∈(0,90°)
所以,sinC=2/√5,cosC=1/√5
而,sinA=sin[180°-(B+C)]=sin(B+C)=sinBcosC+cosBsinC
=(√2/2)*(2/√5)+(√2/2)*(1/√5)
=(√2/2)*(3/√5)
=3/√10
由正弦定理有:a/sinA=b/sinB得到:
a/(3/√10)=100/(√2/2)
所以,a=300*√2/√10=60√5
2.在△ABC中,A、B、C相对应的边分别是a、b、c,求acosB+bcosA.
acosB+bcosA
=a*[(a^2+c^2-b^2)/(2ac)]+b*[(b^2+c^2-a^2)/(2bc)]
=(a^2+c^2-b^2)/(2c)+(b^2+c^2-a^2)/(2c)
=(a^2+c^2-b^2+b^2+c^2-a^2)/(2c)
=2c^2/(2c)
=c
全部回答
- 1楼网友:山君与见山
- 2021-05-02 17:28
你们怎么倒着学?
- 2楼网友:蓝房子
- 2021-05-02 16:33
http://dayi.prcedu.com/question_438167你去看看有没有你要的
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯