我需要具体的过程!谢谢~
规律为(n+1)²
(1+1/1*3)(1+1/2*4)(1+1/3*5)(1+1/4*6)…(1+1/2013*2015)
答案:5 悬赏:40 手机版
解决时间 2021-04-09 10:49
- 提问者网友:我是我
- 2021-04-08 13:26
最佳答案
- 五星知识达人网友:长青诗
- 2021-04-08 14:23
前面很多人回答了,我就写一下规律吧,推导出此类题目的公式,可以不局限于具体数字,对于此类题目改变数字也可以很容易求出。
考察一般项第k项:
1+ 1/[k(k+2)]=[k(k+2)+1]/[k(k+2)]=(k²+2k+1)/[k(k+2)]=(k+1)²/[k(k+2)]
[1+1/(1×3)][1+1/(2×4)]+...+[1+1/n(n+2)]
=[2²/(1×3)][3²/(2×4)]...[(n+1)²/n(n+2)]
=2²×3²×...×(n+1)²/[(1×3)×(2×4)×...×n(n+2)]
=2²×3²×...×(n+1)²/[(1×2×...×n)(3×4×...×(n+2)]
=2²×3²×...×(n+1)²/[1×2×(3²×4²×...×n²)×(n+1)×(n+2)]
=2²×(n+1)²/[2(n+1)(n+2)]
=2(n+1)/(n+2)
对于本题,n=2013
原式=2×(2013+1)/(2013+2)=4028/2015
考察一般项第k项:
1+ 1/[k(k+2)]=[k(k+2)+1]/[k(k+2)]=(k²+2k+1)/[k(k+2)]=(k+1)²/[k(k+2)]
[1+1/(1×3)][1+1/(2×4)]+...+[1+1/n(n+2)]
=[2²/(1×3)][3²/(2×4)]...[(n+1)²/n(n+2)]
=2²×3²×...×(n+1)²/[(1×3)×(2×4)×...×n(n+2)]
=2²×3²×...×(n+1)²/[(1×2×...×n)(3×4×...×(n+2)]
=2²×3²×...×(n+1)²/[1×2×(3²×4²×...×n²)×(n+1)×(n+2)]
=2²×(n+1)²/[2(n+1)(n+2)]
=2(n+1)/(n+2)
对于本题,n=2013
原式=2×(2013+1)/(2013+2)=4028/2015
全部回答
- 1楼网友:像个废品
- 2021-04-08 18:53
=(4/1*3)(9/2*4)(16/3*5)......(2014^2/2013*2015)
=2^2*3^3*...*2014^2/(1*3*2*4*3*5*...*2013*2015)
=2^2*3^3*...*2014^2/(2*3^2*4^2*...*2013^2*2014*2015)
=2*2014/2015=4028/2015
- 2楼网友:野慌
- 2021-04-08 17:54
每一个括号内的通项为:1+[1/n(n+2)]=[n(n+2)+1]/[n(n+2)]
=[n^2+2n+1]/[n(n+2)]
=(n+1)^2/[n(n+2)]
=[(n+1)/n]*[(n+1)/(n+2)]
所以:原式
=[(2/1)*(2/3)]*[(3/2)*(3/4)]*[(4/3)*(4/5)]*……*[(2014/2013)*(2014/2015)]
从第二项起,相邻两项直接约分
2*2014/2015=4028/2015
- 3楼网友:躲不过心动
- 2021-04-08 16:48
由于1+1/[n*(n+2)]=[(n+1)^2]/[n*(n+2)]
所以
(1+1/1*3)(1+1/2*4)(1+1/3*5)(1+1/4*6)…(1+1/2013*2015)=[(2014!)^2]*2/[2014*2015*(2013!)^2]=4028/2015
- 4楼网友:西岸风
- 2021-04-08 15:24
[1+1/(1*3)]*[1+1/(2*4)]*[1+1/(3*5)]*...*[1+1/(97*99)]*[1+1/(98*100)] =(2*2/1*3)*(3*3/2*4)*(4*4/3*5)*(5*5/4*6)*...*(98*98/97*99)*(99*99/98*100) =2/1*99/100 =1.98 这样可能看不懂,只要你把我列的那一步写成分数的形式看一下规律,错位抵消!先消掉分子的上的平方,再一遍消掉分母,最后就剩下首尾的相乘!方法绝对正确呵呵!
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯