【外接球问题方法总结】...体积的典型例题要有详细讲解和答案以及总结方法】...
答案:2 悬赏:10 手机版
解决时间 2021-02-22 09:29
- 提问者网友:低吟詩仙的傷
- 2021-02-21 09:35
【外接球问题方法总结】...体积的典型例题要有详细讲解和答案以及总结方法】...
最佳答案
- 五星知识达人网友:孤独入客枕
- 2021-02-21 10:31
【答案】 正三棱锥的外接球体积与内接球体积之比是多少
体积比1:27
设正四面体为PABC,由于对称,两球球心重叠,设为O.
设正四面体为PABC的内切球半径为r.
设PO的延长线与底面ABC的交点为D,则PD为正四面体PABC的高,其垂直于底面ABC,且PO=R,OD=r,OD=正四面体PABC内切球的高.
设正四面体PABC底面面积为S.
将球心O与四面体的4个顶点PABC全部连结,可以得到4个全等的正三棱锥,体心为顶点,以正四面体面为底面.
每个正三棱锥体积V1=1/3*S*r
而正四面体PABC体积V2=1/3*S*(R+r)
根据前面的分析,4*V1=V2
所以,4*1/3*S*r=1/3*S*(R+r)
所以,R=3r
由于球体积公式为V=(4/3)лr^3
故正四面体外接球与内切球体积之比=1:27
体积比1:27
设正四面体为PABC,由于对称,两球球心重叠,设为O.
设正四面体为PABC的内切球半径为r.
设PO的延长线与底面ABC的交点为D,则PD为正四面体PABC的高,其垂直于底面ABC,且PO=R,OD=r,OD=正四面体PABC内切球的高.
设正四面体PABC底面面积为S.
将球心O与四面体的4个顶点PABC全部连结,可以得到4个全等的正三棱锥,体心为顶点,以正四面体面为底面.
每个正三棱锥体积V1=1/3*S*r
而正四面体PABC体积V2=1/3*S*(R+r)
根据前面的分析,4*V1=V2
所以,4*1/3*S*r=1/3*S*(R+r)
所以,R=3r
由于球体积公式为V=(4/3)лr^3
故正四面体外接球与内切球体积之比=1:27
全部回答
- 1楼网友:佘樂
- 2021-02-21 11:28
感谢回答,我学习了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯