数列an中,2a1+2的平方a2+...+2的n次方an=n2+n/2 (1).求an (2).求an的前n项和
答案:2 悬赏:50 手机版
解决时间 2021-02-10 15:47
- 提问者网友:两耳就是菩提
- 2021-02-09 21:13
meiyourenhuida,wuwu
最佳答案
- 五星知识达人网友:从此江山别
- 2021-02-09 22:37
(1) 2a1+2^2*a2+...+2^(n-1)*a(n-1)+2^n*an=n^2+n/2 ①
2a1+2^2*a2+...+2^(n-1)*a(n-1)=(n-1)^2+(n-1)/2 ②
①-②,得
2^n*an=n^2+n/2 -[(n-1)^2+(n-1)/2]=2n-1/2
∴an=2^(-n)*(2n-1/2)
(2) Sn=(2-1/2)/2+(2*2-1/2)/(2^2)+...+(2n-1/2)/(2^n)
=(2/2+2*2/2^2+2*3/2^3+...+2n/2^n)-(1/2^2+1/2^3+...+1/2^(n+1))
设Pn=(2/2+2*2/2^2+2*3/2^3+...+2n/2^n) (1)
Qn=(1/2^2+1/2^3+...+1/2^(n+1)) 则Sn=Pn-Qn
对Qn,为等比数列的前n项和,其中,a1=1/4,q=1/2
∴Qn=1/4*(1-(1/2)^n)/(1-1/2)=1/2*(1-(1/2)^n)=1/2-1/2^(n+1)
对Pn,有Pn/2=(2/2^2+2*2/2^3+2*3/2^4+...+2(n-1)/2^n+2n/2^(n+1)) (2)
(1)-(2),得
Pn-Pn/2=Pn/2=(2/2+2/2^2+2/2^3+...+2/2^n+2n/2^(n+1))
=2(1/2+1/2^2+1/2^3+...+1/2^n+n/2^(n+1))
=2(1/2+1/2^2+1/2^3+...+1/2^n+1/2^(n+1)+(n-1)/2^(n+1))
=2(1/2+Qn+(n-1)/2^(n+1))
∴Pn=4(1/2+Qn+(n-1)/2^(n+1))=2+4(n-1)/2^(n+1)+4Qn
∴Sn=Pn-Qn=2+4(n-1)/2^(n+1)+4Qn-Qn
=2+4(n-1)/2^(n+1)+3Qn
=2+4(n-1)/2^(n+1)+3*[1/2-1/2^(n+1)]
=7/2+(4n-1)/2^(n+1)
2a1+2^2*a2+...+2^(n-1)*a(n-1)=(n-1)^2+(n-1)/2 ②
①-②,得
2^n*an=n^2+n/2 -[(n-1)^2+(n-1)/2]=2n-1/2
∴an=2^(-n)*(2n-1/2)
(2) Sn=(2-1/2)/2+(2*2-1/2)/(2^2)+...+(2n-1/2)/(2^n)
=(2/2+2*2/2^2+2*3/2^3+...+2n/2^n)-(1/2^2+1/2^3+...+1/2^(n+1))
设Pn=(2/2+2*2/2^2+2*3/2^3+...+2n/2^n) (1)
Qn=(1/2^2+1/2^3+...+1/2^(n+1)) 则Sn=Pn-Qn
对Qn,为等比数列的前n项和,其中,a1=1/4,q=1/2
∴Qn=1/4*(1-(1/2)^n)/(1-1/2)=1/2*(1-(1/2)^n)=1/2-1/2^(n+1)
对Pn,有Pn/2=(2/2^2+2*2/2^3+2*3/2^4+...+2(n-1)/2^n+2n/2^(n+1)) (2)
(1)-(2),得
Pn-Pn/2=Pn/2=(2/2+2/2^2+2/2^3+...+2/2^n+2n/2^(n+1))
=2(1/2+1/2^2+1/2^3+...+1/2^n+n/2^(n+1))
=2(1/2+1/2^2+1/2^3+...+1/2^n+1/2^(n+1)+(n-1)/2^(n+1))
=2(1/2+Qn+(n-1)/2^(n+1))
∴Pn=4(1/2+Qn+(n-1)/2^(n+1))=2+4(n-1)/2^(n+1)+4Qn
∴Sn=Pn-Qn=2+4(n-1)/2^(n+1)+4Qn-Qn
=2+4(n-1)/2^(n+1)+3Qn
=2+4(n-1)/2^(n+1)+3*[1/2-1/2^(n+1)]
=7/2+(4n-1)/2^(n+1)
全部回答
- 1楼网友:逃夭
- 2021-02-09 22:48
解:
n=1时,a1=(2×1-3)·2²=-4
n≥2时,
a1+3a2+...+(2n-3)a(n-1)+(2n-1)an=(2n-3)·2^(n+1) (1)
a1+3a2+...+(2n-3)a(n-1)=(2n-5)·2ⁿ (2)
(1)-(2)
(2n-1)an=(2n-3)·2^(n+1) -(2n-5)·2ⁿ=(4n-6-2n+5)·2ⁿ =(2n-1)·2ⁿ
an=2ⁿ
n=1时,a1=2≠-4
数列{an}的通项公式为
an=-4 n=1
2ⁿ n≥2
n=1时,b1=s1=2+1-2=1
n≥2时,sn=2n²+n-2 s(n-1)=2(n-1)²+(n-1)-2
bn=sn-s(n-1)=2n²+n-2 -2(n-1)²-(n-1)+2=4n-1
n=1时,b1=4-1=3≠1
数列{bn}的通项公式为
bn=1 n=1
4n-1 n≥2
n=1时,w1=a1b1=(-4)·1=-4
n≥2时,
anbn=(4n-1)·2ⁿ=n·2^(n+2) -2ⁿ
wn=a1b1+a2b2+...+anbn
=-4+[2×2^4+3×2^5+...+n×2^(n+2)]-(2²+2³+...+2ⁿ)
令tn=2×2^4+3×2^5+...+n×2^(n+2)
则2tn=2×2^5+3×2^6+...+(n-1)×2^(n+2)+n×2^(n+3)
tn-2tn=-tn=2×2^4+2^5+2^6+...+2^(n+2)-n×2^(n+3)
=[2^4+2^5+2^6+...+2^(n+2)]-n×2^(n+3) +16
=16×[2^(n-1) -1]/(2-1) -n×2^(n+3) +16
=16×2^(n-1)-16n×2^(n-1)
tn=(16n-16)×2^(n-1)
wn=-4+tn-4 ×[2^(n-1) -1]/(2-1)
=(16n-16)×2^(n-1)-4×2^(n-1)
=(16n-20)×2^(n-1)
=(4n-5)×2^(n+1)
=n×2^(n+3)-5×2^(n+1)
n=1时,w1=1×16-5×4=-4,同样满足。
综上,得wn=n×2^(n+3)-5×2^(n+1)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯