如图,梯形ABCD中,AD∥BC,AB=AD=DC,点E为底边BC的中点,且DE∥AB.试判断△ADE的形状,并给出证明.
答案:2 悬赏:60 手机版
解决时间 2021-01-03 20:48
- 提问者网友:山高云阔
- 2021-01-03 13:35
如图,梯形ABCD中,AD∥BC,AB=AD=DC,点E为底边BC的中点,且DE∥AB.试判断△ADE的形状,并给出证明.
最佳答案
- 五星知识达人网友:未来江山和你
- 2021-01-03 14:52
解:△ADE是等边三角形.
证明:∵AD∥BC,DE∥AB,
∴四边形ABED为平行四边形.
∴AB=DE,AD=BE.
∵BE=CE,
∴AD=CE.
∴四边形AECD是平行四边形.
∴AE=CD.
∵AB=AD=CD,
∴AD=AE=DE.
∴△ADE为等边三角形.解析分析:此题可以发现并证明两个平行四边形,根据平行四边形的性质得到三角形的三边关系进行证明.点评:此题的重点是发现两个平行四边形,根据平行四边形的性质以及已知条件找到线段之间的等量关系.
证明:∵AD∥BC,DE∥AB,
∴四边形ABED为平行四边形.
∴AB=DE,AD=BE.
∵BE=CE,
∴AD=CE.
∴四边形AECD是平行四边形.
∴AE=CD.
∵AB=AD=CD,
∴AD=AE=DE.
∴△ADE为等边三角形.解析分析:此题可以发现并证明两个平行四边形,根据平行四边形的性质得到三角形的三边关系进行证明.点评:此题的重点是发现两个平行四边形,根据平行四边形的性质以及已知条件找到线段之间的等量关系.
全部回答
- 1楼网友:愁杀梦里人
- 2021-01-03 15:49
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯