永发信息网

拉普拉斯展开定理怎么证明

答案:2  悬赏:0  手机版
解决时间 2021-02-22 01:28
  • 提问者网友:最爱你的唇
  • 2021-02-21 11:32
拉普拉斯展开定理怎么证明
最佳答案
  • 五星知识达人网友:一把行者刀
  • 2021-02-21 13:00
证明的依据是行列式任意两列互换,行列式值变号,也就是说,行列式中将任意两列互换,互换了几次,则行列式变为原来的(-1)的几次方倍。在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。
将一个矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的 n个元素的余子式的和。
行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵B有 n行 n列,它的拉普拉斯展开一共有 2n种。拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。
它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。



扩展资料
拉普拉斯在1772年的论文中给出了行列式展开的一般形式,现在称为拉普拉斯定理。拉普拉斯定理建立在子式和余子式的基础上。
说明了如果将B关于某k行的每一个子式和对应的代数余子式的乘积加起来,那么得到的仍然是B的行列式。定理的证明与按一行(一列)展开的情况一样,都是通过建立置换间的双射来证明两者相等。
全部回答
  • 1楼网友:患得患失的劫
  • 2021-02-21 13:32
同时按前两行展开。 关于展开式的第一项,您第一句话所指向的行列式不是余子式,就叫2阶子式(不妨记为A);第二个方框所指的行列式是A的余子式,再加上正负号,就是A的代数余子式。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯