数列an满足a1=1,且An=2a(n-1)+2^n(n大于等于2,且属于正自然数)
证明an/2^n是等差数列.
并求an的前n项和Sn
数列an满足a1=1,且An=2a(n-1)+2^n(n大于等于2,且属于正自然数)
答案:1 悬赏:10 手机版
解决时间 2021-04-21 10:48
- 提问者网友:浪荡绅士
- 2021-04-20 13:34
最佳答案
- 五星知识达人网友:十年萤火照君眠
- 2021-04-20 13:39
An=2a(n-1)+2^n,两边都除以2^n,得到
an/2^2 = a(n-1)/2^(n-1) + 1
所以{an/2^n}是等差数列,记做bn,则首项是1/2,公差是1,bn = n-1/2
因为bn = an/2^n,则an = bn * 2^n
典型的等差乘以等比,用错位相减法求和
Sn = a1+...+an = b1 * 2 + b2 * 2^2 +...+ bn * 2^n
2Sn = b1 * 2^2 + b2 * 2^3 + ...+ bn * 2^(n+1)
两个式子相减,化简就能算出
Sn = (2n-3) * 2^n + 3
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯