高中数学三角恒等式包括哪些公式
答案:2 悬赏:40 手机版
解决时间 2021-03-08 20:32
- 提问者网友:姑娘长的好罪过
- 2021-03-08 00:28
高中数学三角恒等式包括哪些公式
最佳答案
- 五星知识达人网友:千夜
- 2021-03-08 01:30
(1)诱导公式
(2)积化和差、和差化积
(3)二倍角公式,三倍角公式,半角公式
(4)万能公式
全部回答
- 1楼网友:西岸风
- 2021-03-08 02:52
常见的三角恒等式
设a,b,c是三角形的三个内角
tana+tanb+tanc=tanatanbtanc
cotacotb+cotbcotc+cotccota=1
(cosa)^2+(cosb)^2+(cosc)^2+2cosacosbcosc=1
cosa+cosb+cosc=1+4sin(a/2)sin(b/2)sin(c/2)
tan(a/2)tan(b/2)+tan(b/2)tan(c/2)+tan(c/2)tan(a/2)=1
sin2a+sin2b+sin2c=4sinasinbsinc
sina+sinb+sinc=4cos(a/2)cos(b/2)cos(c/2)
二倍角公式
sin2a=2sina•cosa
cos2a=cos^2a-sin^2a=1-2sin^2a=2cos^2a-1
tan2a=(2tana)/(1-tan^2a)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
=2sina(1-sin^2a)+(1-2sin^2a)sina
=3sina-4sin^3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos^2a-1)cosa-2(1-cos^a)cosa
=4cos^3a-3cosa
sin3a=3sina-4sin^3a
=4sina(3/4-sin^2a)
=4sina[(√3/2)^2-sin^2a]
=4sina(sin^260°-sin^2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos^3a-3cosa
=4cosa(cos^2a-3/4)
=4cosa[cos^2a-(√3/2)^2]
=4cosa(cos^2a-cos^230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(a/2)=(1-cosa)/sina=sina/(1+cosa);
cot(a/2)=sina/(1-cosa)=(1+cosa)/sina.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tana+tanb=sin(a+b)/cosacosb=tan(a+b)(1-tanatanb)
tana-tanb=sin(a-b)/cosacosb=tan(a-b)(1+tanatanb)
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tanh(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈z)
a·sin(ωt+θ)+ b·sin(ωt+φ) =
√{(a^2 +b^2 +2abcos(θ-φ)} • sin{ ωt + arcsin[ (a•sinθ+b•sinφ) / √{a^2 +b^2; +2abcos(θ-φ)} }
√表示根号,包括{……}中的内容
诱导公式
sin(-α) = -sinα
cos(-α) = cosα
tan (-α)=-tanα
sin(π/2-α) = cosα
cos(π/2-α) = sinα
sin(π/2+α) = cosα
cos(π/2+α) = -sinα
sin(π-α) = sinα
cos(π-α) = -cosα
sin(π+α) = -sinα
cos(π+α) = -cosα
tana= sina/cosa
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
其它公式
(1) (sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tana+tanb+tanc=tanatanbtanc
证:
a+b=π-c
tan(a+b)=tan(π-c)
(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)
整理可得
tana+tanb+tanc=tanatanbtanc
得证
同样可以得证,当x+y+z=nπ(n∈z)时,该关系式也成立
由tana+tanb+tanc=tanatanbtanc可得出以下结论
(5)cotacotb+cotacotc+cotbcotc=1
(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)
(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc
(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯