数学老师今天给我们个任务,要我们查到什么叫有理数和有理式,明天她抽人回答,错误的话要按班规罚款。
我们老师太黑了!这也要罚!
拜托哪个知道的告诉声!不胜感激啊!!
什么叫有理数?什么又叫有理式?
答案:4 悬赏:10 手机版
解决时间 2021-02-06 09:46
- 提问者网友:姑娘长的好罪过
- 2021-02-05 13:37
最佳答案
- 五星知识达人网友:荒野風
- 2021-02-05 14:02
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理式,包括分式和整式。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算,它也可以化为两个多项式的商。例如2x + 2y等都是有理式。含有关于字母开方运算的代数式称为无理式。
扩展资料:
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
有理数的大小顺序的规定:如果
是正有理数,当
大于或小于
,记作
或
。任何两个不相等的有理数都可以比较大小。
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
有关于多项式A,B的分式
,当
为多项式时,下列式子成立:
(1)
(2)
(3)
(4)
另外,关于多项式
下列式子也成立:
(1)
(2)
参考资料:搜狗百科---有理式
参考资料:搜狗百科---有理数
数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理式,包括分式和整式。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算,它也可以化为两个多项式的商。例如2x + 2y等都是有理式。含有关于字母开方运算的代数式称为无理式。
扩展资料:
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
有理数的大小顺序的规定:如果
是正有理数,当
大于或小于
,记作
或
。任何两个不相等的有理数都可以比较大小。
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
有关于多项式A,B的分式
,当
为多项式时,下列式子成立:
(1)
(2)
(3)
(4)
另外,关于多项式
下列式子也成立:
(1)
(2)
参考资料:搜狗百科---有理式
参考资料:搜狗百科---有理数
全部回答
- 1楼网友:旧脸谱
- 2021-02-05 15:45
把整数和分数统称为有理数;单项式和多项式统称为整式;分子分母都是整式,且分母中含字母的式子叫做分式;整式和分式统称为有理式;
- 2楼网友:从此江山别
- 2021-02-05 15:21
有理数的定义:整数和分数的统称。
有理数的分类:
(1)分为整数和分数。而整数分为正整数、零和负整数 ;分数分为正分数和负分数。
(2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分数。有理式的定义:整式和分式的统称。
- 3楼网友:山君与见山
- 2021-02-05 14:16
整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。 任何一个有理数都可以在数轴上表示。 无限不循环小数和开方开不尽的数开方根叫作无理数 ,比如π,3.1415926535897932384626...... 而有理数恰恰与它相反,整数和分数统称为有理数 其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 这一定义在数的十进制和其他进位制(如二进制)下都适用。 数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。 所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。 有理数包括: 1)自然数:数0,1,2,3,……叫做自然数。 2)正数:比0大的数叫做正数。 3)负数:在正数前面加上“—”(读作“负”)号的数叫做负数。负数都小于0。 4)整数:正整数、0、负整数统称为整数。 5)分数:正分数、负分数统称为分数。 6)奇数:不是2的倍数的整数叫做奇数。如-3,-1,1,5等。所有的奇数都可用2n-1或2n+1表示,n为整数。 7)偶数:是2的倍数的整数叫做偶数。如-2,0,4,8等。所有的偶数都可用2n表示,n为整数。 8)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为质数,又称素数,如2,3,11,13等。2是最小的质数。 9)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为合数,如4,6,9,15等。4是最小的合数。 10)互质数:如果两个正整数,除了1以外没有其他因数,这两个整数称为互质数,如2和5,9和13等。 有理式是代数式的一种。包括分式和整式。这种代数式中对于字母只进行有限次加、减、乘、除和正整数次乘方这些运算。例如2x + 2y,,等都是有理式。在代数式的分类中,所指的运算都是针对字母的。如代数式,开方运算没有针对字母,所以仍属有理式,不算无理式。另外,分类是就形式而说的。如代数式,虽然恒等于有理式(x+1)2,但仍不能看作有理式(应属无理式)。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯