已知圆C;X2+Y2-2X+4Y-4=0,是否存在斜率为1的直线L,使L被圆C截得的弦AB为直径的圆经过原点,
若存在,求出直线L的方程,若不存在,说明理由.
已知圆C;X2+Y2-2X+4Y-4=0,是否存在斜率为1的直线L,使L被圆C截得的弦AB为直径的圆经过原点,
答案:1 悬赏:0 手机版
解决时间 2021-06-08 23:45
- 提问者网友:回忆在搜索
- 2021-06-08 09:13
最佳答案
- 五星知识达人网友:纵马山川剑自提
- 2021-06-08 09:30
假设存在
设直线L为Y=X+A
代入圆C消去Y得2X^2+(2A+2)X+A^2+4A-4=0
故(X1+X2)/2 =-(A+1)/2 (Y1+Y2)=(A-1)/2
弦长为根号(18-2A^2-12A)
所以(A+1)^2/4+(A-1)^2/4 =(18-2A^2-12A)/4
解得A1=4 A2=-1
A1=4(舍去)
因此存在这样的直线
Y=X-1
方法就是假设存在
然后根据弦的中点到原点的距离=弦长的一半
列式解答求出A
节下来检验A是否满足题仪即L要与圆C相交求出A的范围
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯