永发信息网

步进电机外文翻译

答案:1  悬赏:60  手机版
解决时间 2021-07-19 07:03
  • 提问者网友:蓝琪梦莎
  • 2021-07-18 23:17

Variable Reluctance Motors

Typical controllers for variable reluctance stepping motors are variations on the outline shown in Figure 3.1:

Figure 3.1

In Figure 3.1, boxes are used to represent switches; a control unit, not shown, is responsible for providing the control signals to open and close the switches at the appropriate times in order to spin the motors. In many cases, the control unit will be a computer or programmable interface controller, with software directly generating the outputs needed to control the switches, but in other cases, additional control circuitry is introduced, sometimes gratuitously!

Motor windings, solenoids and similar devices are all inductive loads. As such, the current through the motor winding cannot be turned on or off instantaneously without involving infinite voltages! When the switch controlling a motor winding is closed, allowing current to flow, the result of this is a slow rise in current. When the switch controlling a motor winding is opened, the result of this is a voltage spike that can seriously damage the switch unless care is taken to deal with it appropriately.

There are two basic ways of dealing with this voltage spike. One is to bridge the motor winding with a diode, and the other is to bridge the motor winding with a capacitor. Figure 3.2 illustrates both approaches:

Figure 3.2

The diode shown in Figure 3.2 must be able to conduct the full current through the motor winding, but it will only conduct briefly each time the switch is turned off, as the current through the winding decays. If relatively slow diodes such as the common 1N400X family are used together with a fast switch, it may be necessary to add a small capacitor in parallel with the diode.

The capacitor shown in Figure 3.2 poses more complex design problems! When the switch is closed, the capacitor will discharge through the switch to ground, and the switch must be able to handle this brief spike of discharge current. A resistor in series with the capacitor or in series with the power supply will limit this current. When the switch is opened, the stored energy in the motor winding will charge the capacitor up to a voltage significantly above the supply voltage, and the switch must be able to tolerate this voltage. To solve for the size of the capacitor, we equate the two formulas for the stored energy in a resonant circuit:

P = C V2 / 2
P = L I2 / 2

Where:

P -- stored energy, in watt seconds or coulomb volts
C -- capacity, in farads
V -- voltage across capacitor
L -- inductance of motor winding, in henrys
I -- current through motor winding

Solving for the minimum size of capacitor required to prevent overvoltage on the switch is fairly easy:

C > L I2 / (Vb - Vs)2

Where:

Vb -- the breakdown voltage of the switch
Vs -- the supply voltage

Variable reluctance motors have variable inductance that depends on the shaft angle. Therefore, worst-case design must be used to select the capacitor. Furthermore, motor inductances are frequently poorly documented, if at all.

The capacitor and motor winding, in combination, form a resonant circuit. If the control system drives the motor at frequencies near the resonant frequency of this circuit, the motor current through the motor windings, and therefore, the torque exerted by the motor, will be quite different from the steady state torque at the nominal operating voltage! The resonant frequency is:

f = 1 / ( 2 (L C)0.5 )

Again, the electrical resonant frequency for a variable reluctance motor will depend on shaft angle! When a variable reluctance motors is operated with the exciting pulses near resonance, the oscillating current in the motor winding will lead to a magnetic field that goes to zero at twice the resonant frequency, and this can severely reduce the available torque!

最佳答案
  • 五星知识达人网友:街头电车
  • 2021-07-19 00:28

可变磁阻电动机


可变磁阻步进电机控制器的典型在图3.1所示的大纲变化:


图3.1


在图3.1,框用来表示开关,一个控制单元,没有显示,则提供负责控制信号,打开和关闭在适当的时间的开关,以旋转的发动机。在许多情况下,控制单元将是一台计算机或可编程接口控制器,直接生成所需的软件来控制开关的产出,但在其他情况下,额外的控制电路介绍,有时无偿!


电机绕组,电磁阀和类似设备都是感性负载。因此,通过电机绕组电流不能被打开或关闭瞬间电压不涉及无限!当开关控制一电机绕组被关闭,使电流流,这个结果是在当前的缓慢上升。当开关控制电机绕组一打开,这个结果是一个尖峰电压,可以严重破坏,除非采取小心妥善处理与它交换。


有两个与此电压尖峰处理的基本方法。一个是缩小电机绕组的二极管,另一个是消除电机绕组的电容。图3.2说明了这两种方法:


图3.2


图3.2所示的二极管必须能够进行完整的电流通过电机绕组,但它每次只能进行简单的开关关闭时,由于电流通过绕组衰变。如果这些家庭的共同1N400X相对缓慢二极管用于快速开关一起,可能需要增加与二极管并联一个小电容。


图3.2所示的电容构成更复杂的设计问题!当开关关闭时,电容会放电,通过地面开关,开关必须能够处理这一简短的放电峰值电流。阿与电容器或与电源系列串联电阻会限制这个电流。当开关打开时,在蜿蜒的电容器充电了大大高于电源电压的电压电机储存的能量,和开关必须能够容忍这种电压。为了解决电容的大小,我们等同的谐振电路中存储的能量的两个公式:


P = ç V2 / 2
P =蜇我2 / 2


其中:


P -储存的能量,在瓦伏秒或库仑
C部分-能力,法拉
五-在电容式电压
蜇-电机绕组电感,在亨利斯
我-电流通过电机绕组


电容的最低要求,以防止对开关电压的大小是很容易解决:


荤“蜇我2 /(五b - Vš2


其中:


Vb -开关的击穿电压
Vš -电源电压


可变磁阻电动机具有可变电感,关于轴角度而定。因此,最坏情况的设计必须用来选择电容器。此外,电机电感经常记录不完整,如果在所有。


电容器和电机绕组相结合,形成了一个谐振电路。如果控制系统的驱动器在附近的这条赛道,通过电机绕组电机电流,因此,共振频率的频率电机,转矩马达产生的,将在很大的额定工作电压稳态扭矩不同!谐振频率为:


系数= 1 /(2(劳工处处长)0.5


同样,电力为可变磁阻电动机的谐振频率,将取决于轴角!当一个可变磁阻电动机附近运作共振令人激动的脉冲,在清盘将导致磁场变为零的两倍电机共振频率振荡电流,这会严重地减少的扭矩!

我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯