永发信息网

已知椭圆c x^2/a^2+y^2=1(a>1)得上顶点为A,左右焦点分别为F1,F2,直线AF2与圆M x^2+y^2

答案:1  悬赏:0  手机版
解决时间 2021-05-03 01:13
  • 提问者网友:我一贱你就笑
  • 2021-05-02 17:21
已知椭圆c x^2/a^2+y^2=1(a>1)得上顶点为A,左右焦点分别为F1,F2,直线AF2与圆M x^2+y^2-6x-2y+7=0相切
(1)求椭圆C的方程
(2)若椭圆内存在动点P,使/PF1/、/PO/、/PF2/成等比数列,求向量PF1乘PF2的取值范围
给我具体过程,我让你盖楼,不要给我搭窝棚,思路我会,
最佳答案
  • 五星知识达人网友:西岸风
  • 2021-05-02 18:48

AC*F1F2=0,AF1⊥F1F2,
9AF1*AF2=AF1^2,为方便起见,记|AF1|=r,|AF2|=s,而|F1F2|=2c
即9rscosA=r^2
所以cosA=r/(9s)
由直角三角形可得
cosA=s/r,所以r=3s,及4c^2+s^2=r^2,于是4c^2=8s^2,c^2=2s^2
2a=r+s=4s,a=2s又a^2-c^2=1,即4s^2-2s^2=1,s^2=1/2
a^2=2,
椭圆方程为x^2/2+y^2=1
由条件可知,圆与椭圆在上顶点处外切
|EF|=2,
PE*PF=|PE||PF|cos∠EPF=(|PE|^2+|PF|^2-|EF|^2)/2
记圆心为C,则PC为三角形PEF的边EF上的中线,于是
4|PC|^2+|EF|^2=2(|PE|^2+|PF|^2)
即|PE|^2+|PF|^2=|EF|^2/2+2|PC|^2
PE*PF=2|PC|^2-|EF|^2/2=2|PC|^2-2
所以只需求|PC|的最大值
为此,我们考虑圆x^2+(y-2)^2=9与椭圆的位置关系,
联立椭圆方程可解得y仅有-1一个解,
这说明椭圆的下顶点到C的距离最远,
即|PC|的最大值为3,
所以PE*PF的最大值为16


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯