永发信息网

设函数f(x)=|x-a|-ax,其中a>0为常数.,试求函数f(x)存在最小值的充要条件,并求出相应的最小值.

答案:1  悬赏:60  手机版
解决时间 2021-07-31 07:37
  • 提问者网友:却不属于对方
  • 2021-07-30 18:53
设函数f(x)=|x-a|-ax,其中a>0为常数.,试求函数f(x)存在最小值的充要条件,并求出相应的最小值.
最佳答案
  • 五星知识达人网友:拾荒鲤
  • 2021-07-30 20:28

由条件得:f(x)=

(1?a)x?a当x≥a时
?(1+a)x+a当x<a时,(4分)
∵a>0,
∴-(1+a)<0,f(x)在(-∞,a)上是减函数.
如果函数f(x)存在最小值,
则f(x)在[a,+∞)上是增函数或常数.
∴1-a≥0,
得a≤1,
又a>0,∴0<a≤1.(5分)
反之,当0<a≤1时,
(1-a)≥0,∴f(x)在f[a,+∞)上是增函数或常数.
-(1+a)<0,∴f(x)在(-∞,a)上是减函数.
∴f(x)存在最小值f(a).
综合上述f(x)存在最小值的充要条件是0<a≤1,此时f(x)min=-a2(3分)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯