分解因式:(x²-7x+6)(x²-x-6)+56
答案:4 悬赏:70 手机版
解决时间 2021-02-10 01:24
- 提问者网友:未信
- 2021-02-09 12:35
分解因式:(x²-7x+6)(x²-x-6)+56
最佳答案
- 五星知识达人网友:往事埋风中
- 2021-02-09 13:28
(x²-7x+6)(x²-x-6)+56
(x-1)(x-6)(x+2)(x-3)+56
(x²-4x+3)(x²-4x-12)+56
(x²-4x)²-9(x²-4x)-36+56
(x²-4x)²-9(x²-4x)+20
(x²-4x-4)(x²-4x-5)
(x²-4x-4)(x-5)(x+1)
(x-1)(x-6)(x+2)(x-3)+56
(x²-4x+3)(x²-4x-12)+56
(x²-4x)²-9(x²-4x)-36+56
(x²-4x)²-9(x²-4x)+20
(x²-4x-4)(x²-4x-5)
(x²-4x-4)(x-5)(x+1)
全部回答
- 1楼网友:轮獄道
- 2021-02-09 17:02
原式
=(x-1)(x-6)(x+2)(x-3)+56
=(x-1)(x-3)(x-6)(x+2)+56
=(x²-4x+3)(x²-4x-12)+56
令x²-4x=t
原式化为
(t+3)(t-12)+56
=t²-9t-36+56
=t²-9t+20
=(t-4)(t-5)
=(x²-4x-4)(x²-4x-5)
=(x²-4x-4)(x-5)(x+1)
=(x-1)(x-6)(x+2)(x-3)+56
=(x-1)(x-3)(x-6)(x+2)+56
=(x²-4x+3)(x²-4x-12)+56
令x²-4x=t
原式化为
(t+3)(t-12)+56
=t²-9t-36+56
=t²-9t+20
=(t-4)(t-5)
=(x²-4x-4)(x²-4x-5)
=(x²-4x-4)(x-5)(x+1)
- 2楼网友:春色三分
- 2021-02-09 15:34
(x^2-7x+6)(x^2-x-6)+56
=(x-6)(x-1)(x-3)(x+2)+56
=[(x-6)(x+2)][(x-1)(x-3)]+56
=(x^2-4x-12)(x^2-4x+3)+56
=(x^2-4x)^2-9(x^2-4x)-36+56
=(x^2-4x)^2-9(x^2-4x)+20
=(x^2-4x-4)(x^2-4x-5)
=(x^2-4x-4)(x-5)(x+1)
=(x-6)(x-1)(x-3)(x+2)+56
=[(x-6)(x+2)][(x-1)(x-3)]+56
=(x^2-4x-12)(x^2-4x+3)+56
=(x^2-4x)^2-9(x^2-4x)-36+56
=(x^2-4x)^2-9(x^2-4x)+20
=(x^2-4x-4)(x^2-4x-5)
=(x^2-4x-4)(x-5)(x+1)
- 3楼网友:第幾種人
- 2021-02-09 14:16
(x²-7x+6)(x²-x-6)+56
=(x-6)(x-1)(x-3)(x+2)+56
=[(x-6)(x+2)][(x-1)(x-3)]+56 (注意此处两两相乘的原则是一次项系数相同)
=(x^2-4x-12)(x^2-4x+3)+56 (把x^2-4x看成一个整体)
=(x^2-4x)^2-9(x^2-4x)-36+56
=(x^2-4x)^2-9(x^2-4x)+20
=(x^2-4x-4)(x^2-4x-5)
=(x^2-4x-4)(x-5)(x+1) (前一项有实根)
=[(x-(2+2√2)][x+(2+2√2)](x-5)(x+1)
=(x-6)(x-1)(x-3)(x+2)+56
=[(x-6)(x+2)][(x-1)(x-3)]+56 (注意此处两两相乘的原则是一次项系数相同)
=(x^2-4x-12)(x^2-4x+3)+56 (把x^2-4x看成一个整体)
=(x^2-4x)^2-9(x^2-4x)-36+56
=(x^2-4x)^2-9(x^2-4x)+20
=(x^2-4x-4)(x^2-4x-5)
=(x^2-4x-4)(x-5)(x+1) (前一项有实根)
=[(x-(2+2√2)][x+(2+2√2)](x-5)(x+1)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯