求方程组的实数解.
答案:2 悬赏:0 手机版
解决时间 2021-03-22 01:13
- 提问者网友:你给我的爱
- 2021-03-21 02:37
求方程组的实数解.
最佳答案
- 五星知识达人网友:玩家
- 2021-03-21 03:12
解:将x+y=2两边分别平方,得x2+2xy+y2=4(1)
把方程xy-z2=1两边都乘以2得2xy-2z2=2(2)
(1)-(2)得:x2+y2+2z2=2(3)
由x+y=2得2x+2y=4(4)
(3)-(4)得:x2+y2+2z2-2x-2y+2=0,
配方,得:(x-1)2+(y-1)2+2z2=0,
∵x,y,z均为实数,
∴只能是(x-1)2=0,(y-1)2=0,z2=0,
∴x=1,y=1,z=0,
显然x=1,y=1,z=0满足原方程组.
∴原方程组的实数解为:x=1,y=1,z=0.解析分析:首先把x+y=2两边分别平方,得x2+2xy+y2=4,一步步化简可以得到:(x-1)2+(y-1)2+2z2=0,根据非负数的性质,可以解得x、y、z的值.点评:本题主要考查高次方程求解的问题,解决此类问题的关键是把方程转化成几个非负数之和的形式,再进行求解,此类题具有一定的难度,同学们解决时需要细心.
把方程xy-z2=1两边都乘以2得2xy-2z2=2(2)
(1)-(2)得:x2+y2+2z2=2(3)
由x+y=2得2x+2y=4(4)
(3)-(4)得:x2+y2+2z2-2x-2y+2=0,
配方,得:(x-1)2+(y-1)2+2z2=0,
∵x,y,z均为实数,
∴只能是(x-1)2=0,(y-1)2=0,z2=0,
∴x=1,y=1,z=0,
显然x=1,y=1,z=0满足原方程组.
∴原方程组的实数解为:x=1,y=1,z=0.解析分析:首先把x+y=2两边分别平方,得x2+2xy+y2=4,一步步化简可以得到:(x-1)2+(y-1)2+2z2=0,根据非负数的性质,可以解得x、y、z的值.点评:本题主要考查高次方程求解的问题,解决此类问题的关键是把方程转化成几个非负数之和的形式,再进行求解,此类题具有一定的难度,同学们解决时需要细心.
全部回答
- 1楼网友:患得患失的劫
- 2021-03-21 04:43
我检查一下我的答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯