数学概念
答案:1 悬赏:60 手机版
解决时间 2021-11-20 05:57
- 提问者网友:临风不自傲
- 2021-11-19 12:24
数学概念
最佳答案
- 五星知识达人网友:刀戟声无边
- 2021-11-19 13:32
一、数学概念的意义
1.概念的意义
逻辑学认为,概念是反映事物(思维对象)及其特有属性(本质属性)的思维形式。人们对客观事物的认识一般是通过感觉、知觉、思维形成观念(印象或表象),这是感性认识阶段,在感性认识的基础上,通过对客观事物的分析、综合、比较、抽象、概括、归纳与演绎等一系列思维活动,从而认识事物的本质属性形成概念,这是认识的理性阶段。理性认识在实践基础上不断深化,形成的概念又会进一步发展。
2.数学概念的意义
数学概念是一类特殊的概念,是其所反映的事物在现实世界中的空间形式和数量关系及其本质属性在思维中的反映。如平行四边形的概念在人的思维中反映出:这样的对象是四边形形状的而且两组对边是分别平行的。这就是四边形的本质属性。
数学概念在数学思维中起着十分重要的作用,它是最基本的思维形式。判断是由概念构成的,推理和证明又是由判断构成的,可以说,数学概念是数学的细胞。
概念是反映客观事物的思想,是客观事物在人们头脑中的抽象概括,是看不见摸不着的。要通过语词表达出来,才便于人们研究、交流,数学概念也不例外。如平行四边形概念用语词表达就是:“两组对边分别平行的四边形叫做平行四边形”。
数学概念的语词表达的一般形式是“(概念的本质属性)……叫做……(概念的名词)”。
二、数学概念的内涵和外延及它们之间的反变关系
1.数学概念的内涵和外延
客观世界的事物千差万别,反映在人的思维中也就千差万别,所形成的概念也千差万别,语词表达出来也是如此。但它们都有一个共同特点,都是用来认识和区别事物的。我们把一个概念所反映的所有对象的共同本质属性的总和,叫做这个概念的内涵。如平行四边形的内涵就是平行四边形所代表的所有对象的共同本质属性的总和:有四条边,两组对边分别平行……我们把适合概念的所有对象的范围,叫做概念的外延。如有理数和无理数,就是实数这个概念的外延。同样,实数和虚数,也是复数这个概念的外延。内涵和外延是概念的两个方面,正确的思维要求概念明确,明确概念即是要明确概念的内涵和外延。
对数学概念显然也有上述定义的结论。这对理解数学概念,指导数学概念的教学有十分重要的意义。
2.概念的内涵与外延的反变关系
要对概念加深认识,还要注意逻辑学中称之为概念的内涵与外延的反变关系,即:概念的内涵扩大时,其所得的新概念的外延缩小;当概念的内涵缩小时,其所得的新概念的外延扩大。反之,也成立。例如,在“矩形”概念的内涵中增加“一组邻边相等”的属性时,就得到外延缩小了的“正方形”的概念;在“矩形”的概念中去掉“有一个角是直角”的属性,就得到外延扩大了的“平行四边形”的概念。
利用概念的内涵与外延的反变关系,通过采取扩大概念的内涵同时缩小概念的外延的方法来研究概念间的关系和性质,这种方法在逻辑学中称之为“概念的限制”;通过缩小概念内涵的同时扩大概念外延的方法来认识同类概念的共同性质,这种方法在逻辑学上称之为“概念的概括”。在中学数学的概念教学中,经常使用概念的限制和概括的方法给新概念下定义和复习同类概念的共同性质。
三、概念间的关系
1.概念的意义
逻辑学认为,概念是反映事物(思维对象)及其特有属性(本质属性)的思维形式。人们对客观事物的认识一般是通过感觉、知觉、思维形成观念(印象或表象),这是感性认识阶段,在感性认识的基础上,通过对客观事物的分析、综合、比较、抽象、概括、归纳与演绎等一系列思维活动,从而认识事物的本质属性形成概念,这是认识的理性阶段。理性认识在实践基础上不断深化,形成的概念又会进一步发展。
2.数学概念的意义
数学概念是一类特殊的概念,是其所反映的事物在现实世界中的空间形式和数量关系及其本质属性在思维中的反映。如平行四边形的概念在人的思维中反映出:这样的对象是四边形形状的而且两组对边是分别平行的。这就是四边形的本质属性。
数学概念在数学思维中起着十分重要的作用,它是最基本的思维形式。判断是由概念构成的,推理和证明又是由判断构成的,可以说,数学概念是数学的细胞。
概念是反映客观事物的思想,是客观事物在人们头脑中的抽象概括,是看不见摸不着的。要通过语词表达出来,才便于人们研究、交流,数学概念也不例外。如平行四边形概念用语词表达就是:“两组对边分别平行的四边形叫做平行四边形”。
数学概念的语词表达的一般形式是“(概念的本质属性)……叫做……(概念的名词)”。
二、数学概念的内涵和外延及它们之间的反变关系
1.数学概念的内涵和外延
客观世界的事物千差万别,反映在人的思维中也就千差万别,所形成的概念也千差万别,语词表达出来也是如此。但它们都有一个共同特点,都是用来认识和区别事物的。我们把一个概念所反映的所有对象的共同本质属性的总和,叫做这个概念的内涵。如平行四边形的内涵就是平行四边形所代表的所有对象的共同本质属性的总和:有四条边,两组对边分别平行……我们把适合概念的所有对象的范围,叫做概念的外延。如有理数和无理数,就是实数这个概念的外延。同样,实数和虚数,也是复数这个概念的外延。内涵和外延是概念的两个方面,正确的思维要求概念明确,明确概念即是要明确概念的内涵和外延。
对数学概念显然也有上述定义的结论。这对理解数学概念,指导数学概念的教学有十分重要的意义。
2.概念的内涵与外延的反变关系
要对概念加深认识,还要注意逻辑学中称之为概念的内涵与外延的反变关系,即:概念的内涵扩大时,其所得的新概念的外延缩小;当概念的内涵缩小时,其所得的新概念的外延扩大。反之,也成立。例如,在“矩形”概念的内涵中增加“一组邻边相等”的属性时,就得到外延缩小了的“正方形”的概念;在“矩形”的概念中去掉“有一个角是直角”的属性,就得到外延扩大了的“平行四边形”的概念。
利用概念的内涵与外延的反变关系,通过采取扩大概念的内涵同时缩小概念的外延的方法来研究概念间的关系和性质,这种方法在逻辑学中称之为“概念的限制”;通过缩小概念内涵的同时扩大概念外延的方法来认识同类概念的共同性质,这种方法在逻辑学上称之为“概念的概括”。在中学数学的概念教学中,经常使用概念的限制和概括的方法给新概念下定义和复习同类概念的共同性质。
三、概念间的关系
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯